Supplementary Data for

Manuscript ID JM-ART-04-2012-032554

Structure Engineering of Naphthalenediimides for improved Charge Carrier Mobility: Self-assembly by Hydrogen Bonding, Good or Bad?

Nagesh B. Kolhe,^a R. Nandini Devi,^a Satyaprasad P. Senanayak,^b B. Jancy,^a K. S. Narayan^b and S. K. Asha*^{1a}

a) Polymer Science & Engineering Division, National Chemical Laboratory, Pune-411008, Maharashtra, India.

b) Jawaharlal Nehru Centre for Advanced Scientific Research Jakur, Bangalore 560064, Karnataka, India

¹ Corresponding Author: S. K. Asha, E-mail: <u>sk.asha@ncl.res.in</u> Fax: 0091-20-25902615.

Sample	Temperature	Enthalpy/ Jg ⁻¹	Phase	10 wt% loss
				Temperature
				(⁰ C)
NDI -E	$161^{\circ}C(104^{\circ}C)$	89.29 (63.24)	Cr	382 [°] C
NDI-A	259°C (229°C)	91.85 (90.78)	Cr	431°C
NDI-E3	-23°C, 29°C, 92°C	3.90, 5.82, 56.38	Spherulitic	389 ⁰ C
	$(-32^{\circ}C, 24^{\circ}C, 70^{\circ}C)$	(2.87, 5.59, 3.30)	crystal	
NDI-A3	41°C, 140°C	3.35, 37.46	Spherulitic	400^{0} C
	$(31^{\circ}C, 118^{\circ}C)$	(4.68, 37.84)	crystal	

Table	S1	Thermal	charact	terization	for	naphtha	alenedii	mides.
	~ -							

Cr = Crystalline, I = Isotropic, Bracket indicate values during cooling

Figure S1 a) 1H NMR spectra of ester NDI-E3, NDI-E

Figure S1 b) 1H NMR spectra amide NDI-A3, NDI-A

Figure S2 A) SEC (size exclusion chromatograph) for NDI-E and NDI-E3 B) SEC (size exclusion chromatograph) for NDI-A and NDI-A3 (has to convert Tiff image)

Figure S2 MALDI-TOF mass data for all naphthalenebiimides.

Figure S4 UV-Vis absorption and emission spectrum of naphthalenediimides in o-DCB.

Figure S5 Normalized absorption spectrum of spin-coated films naphthalene diimides.

Figure S 6 Cyclic Voltamogram of NDI-E2 and NDI-A3

Figure S7 TGA curves for naphthalene diimides.

Figure S9 X- ray diffraction pattern of NDI-A3 at room temperature (black) at RT after cooling from isotropic melt.

Figure S 10 Transistor curves of a) NDI-E3 and b) NDI-A3

 $V_{g}(V)$

V_d (V)

Figure S11 Powder a) and thin film b) WXRD data for NDI-E and NDI-A