Mesoporous NiO Ultrathin nanowire networks Topotactically Transformed from \(\alpha \)-Ni(OH)\(_2\) Hierarchical Microspheres and Its Excellent Capability for Water Treatment and Superior Electrochemical Capacitance Properties

Xiaowei Li,\(^a\) Shenglin Xiong,\(^*\) Jingfa Li,\(^a\) Jing Bai,\(^a\) and Yitai Qian,\(^{a,b}\)

\(^a\)Key Laboratory of the Colloid and Interface Chemistry (Shandong University), Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China

\(^*\)To whom correspondence should be addressed.

Tel: (86)-531-88363018, Fax: (86)-531-88363018

E-mail: chexsl@sdu.edu.cn

\(^{b}\)Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026 (P. R. China)
Figure S1. The panoramic field-emission scanning electron microscope (FESEM) images of α-Ni(OH)₂ prepared through our hydrothermal process with a molar ratio of NiCl₂/CO(NH₂)₂ = 1:1 at 100 °C for 20 h.
Figure S2. FESEM images of various α-Ni(OH)$_2$ precursor hierarchical nanostructures prepared at different quantity of urea at 100 °C for 20 h: (a, b) 2 mmol; (c, d) 4 mmol; (e, f) 6 mmol.
Figure S3. FESEM and TEM images of various NiO hierarchical nanostructures prepared by calcination of the corresponding precursor (a) shown in Fig. S2a-b, (b-c) shown in Fig. S2c-d, (d-f) shown in Fig. S2e-f.
Figure S4. HRTEM images of individual mesocrystalline NiO nanowires.