Supporting Information

For the manuscript

Ag nanoparticles-entrapped hydrogel as promising material for catalytic reduction of organic dyes

by

Yian Zhenga,b and Aiqin Wanga

a Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Fax: 86 931 8277088; Tel: 86 931 4968118; E-mail: aqwang@licp.cas.cn

b Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Fig. S1 Swelling ratios of the hydrogel in AgNO₃ solutions with different concentrations.
[NaBH₄]=10 mM.

Fig. S2 UV-vis spectra of Ag-entrapped hydrogels prepared from different AgNO₃ concentrations.
[NaBH₄]=10 mM.
Fig. S3 Swelling ratios of the Ag⁺-loaded hydrogel in NaBH₄ solutions with different concentrations. [AgNO₃]=5 mM.

Fig. S4 UV-vis spectra of Ag-entrapped hydrogels prepared from different NaBH₄ concentrations, with immersion time of one day. [AgNO₃]=5 mM.
Fig. S5 UV-vis spectra of Ag-entrapped hydrogels prepared from different NaBH₄ concentrations, with immersion time of one week. [AgNO₃]=5 mM.

Fig. S6 The mechanism of catalytic electron transfer where the metal nanoparticles relay the electron from the donor to the acceptor.
Fig. S7 UV-vis spectra of MB reduction in solution after 2 min (black line) and 8 min (blue line). a and b denote the Ag-entrapped hydrogel with and without Al\(^{3+}\) crosslinking.

Fig. S8 UV-vis spectra of CR reduction in solution after 2 min (black line) and 8 min (blue line). a and b denote the Ag-entrapped hydrogel with and without Al\(^{3+}\) crosslinking.
Fig. S9 The catalytic effects for MB and CR reduction in solutions with different amount of Ag-entrapped hydrogel. [dye]=20 mg/L, [NaBH₄]=10 mM.

Fig. S10 The catalytic effects for MB and CR reduction in solutions with different pH values. [dye]=20 mg/L, [NaBH₄]=10 mM, Ag-entrapped hydrogel=10 mg.
Fig. S11 The catalytic effects for MB and CR reduction in solutions with different ion strength. [dye]=20 mg/L, [NaBH₄]=10 mM, Ag-entrapped hydrogel=10 mg.