Supporting information


Liqin Ji¹, Lincheng Zhou¹*, Xue Bai², Yanming Shao¹, Guanghui Zhao¹, Yanzhi Qu³, Cong Wang¹ and Yanfeng Li¹

1. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, P. R. China
2. School of Environment, Tsinghua University, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, P. R. China
3. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, P. R. China

* Corresponding author. Tel.: 86-931-8912528; Fax: 86-931-8912113
E-mail address: zhoulc@lzu.edu.cn
1. XPS

![XPS spectra](image)

**Fig. S1** XPS spectra of N 1s (a) and Si 2p (b) for MWCNTs/Fe₃O₄-NH₂ nanocomposites.

2. Adsorption Kinetics

![Adsorption Kinetics](image)

**Fig. S2** Plot of pseudo second order kinetics model for TBBPA (a) and Pb(II) (b) on MWCNTs/Fe₃O₄ and MWCNTs/Fe₃O₄-NH₂ nanocomposites.
3. Adsorption Isotherms

**Fig. S3** Langmuir adsorption isotherm plots for the adsorption of TBBPA (a) and Pb(II) (b) on MWCNTs/Fe₃O₄ and MWCNTs/Fe₃O₄-NH₂ nanocomposites.

**Fig. S4** Freundlich adsorption isotherm plots for the adsorption of TBBPA (a) and Pb(II) (b) on MWCNTs/Fe₃O₄ and MWCNTs/Fe₃O₄-NH₂ nanocomposites.
**Fig. S5** Temkin adsorption isotherm plots for the adsorption of TBBPA (a) and Pb(II) (b) on MWCNTs/Fe₃O₄ and MWCNTs/Fe₃O₄-NH₂ nanocomposites.