MnO₂ Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances

Wenyao Li‡, Qian Liu‡, Yangang Sun, Jianqing Sun, Rujia Zou, Gao Li, Xianghua Hu, Guosheng Song, Guanxiang Ma, Jianmao Yang, Zhigang Chen and Junqing Hu*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

* Electronic mail: hu.junjqing@dhu.edu.cn (Prof. Junqing Hu)

Part I: Experimental

All the reagents used in the experiments were analytical grade (purchased from Sinopharm) and used without further purification. In a typical synthesis, 0.05g of polyvinylpyrrolidone (PVP) and 40 mL of 0.015 M KMnO₄ aqueous solution were mixed with vigorously magnetic stirring and then transferred into a 50 mL Teflon cup. A Teflon lined autoclave was sealed and maintained at 160 °C for 10 h and then naturally cooled down to room temperature. The precipitates were collected by filtration, washed several times with distilled water and absolute ethanol, successively, and then dried at 60 °C for 8 h. Finally, MnO₂ ultralong nanowires were obtained after calcined at 300 °C for 10 h. For a comparison, MnO₂ nanoflowers and nanorods were also synthesized simply by changing the surfactant while keeping other parameters constant.

As-prepared MnO₂ products were characterized with D/max-2550 PC X-ray diffractometer (XRD; Rigaku, Cu-Kα radiation) at a scan rate of 2 °C min⁻¹, scanning electron microscopy (SEM; HITACHI, S-4800) and transmission electron microscopy (TEM; JEOL, JEM-2100F) equipped with a x-ray energy-dispersive spectrometer (EDS). Electrochemical performances of the as-obtained products were performed on an Autolab (PGSTAT302N potentiostat) using a three-electrode mode.
a 0.5 M Na$_2$SO$_4$ solution. Working electrodes were prepared by mixing the as-synthesized MnO$_2$ products (80 wt%) with acetylene black (15 wt%), and poly(tetrafluoroethylene) (5 wt%). A small amount of N-methylpyrrolidinone was then added to the mixture. The mixture was then dropped onto graphite paper and dried at 80 °C overnight to remove the solvent. The reference electrode and counter electrode were saturated calomel electrode (SCE) and platinum (Pt), respectively. Standard current-voltage (C-V) curves were measured between -0.1 and 0.9 V. The specific capacitance of the electrode was calculated from the C-V curves according to the following equation, $C = \frac{Q}{(\Delta V \cdot m)}$, where C (F g$^{-1}$) is the specific capacitance, m (g) is the mass of the MnO$_2$ in the electrodes, Q (C) is an average charge during the charging and discharging process, and ΔV (V) is the potential window. The discharge specific capacitance is calculated from the discharge curves using the following formula, $C = \frac{I \cdot \Delta t}{(\Delta V \cdot m)}$, where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV, mass of the active materials (or mass of the total electrode materials), and the potential windows, respectively.1

Part II: Supplementary Figures

![Fig S1. High magnification SEM image of the MnO$_2$ ultralong NWs.](image)
Fig S2. TEM view of the framed area where a MnO$_2$ NR was mounted between a Pt cantilever and an Au tip.

Fig S3. C-V curves of MnO$_2$ ultralong NWs under different scan rates.

Table 1 The specific capacitance of MnO$_2$ ultralong NWs under different scan rates

<table>
<thead>
<tr>
<th>Scan rate (mV/s)</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific capacitance (F/g)</td>
<td>262.4</td>
<td>237.0</td>
<td>183.5</td>
<td>152.5</td>
<td>137.1</td>
</tr>
</tbody>
</table>
Fig S4. SEM image of the MnO₂ nanoflowers (a) and MnO₂ nanorods (b).