Electronic Supplementary Information (ESI)

Enhance Efficiency with Fluorinated Interlayer in Small Molecule Organic Solar Cell

Hsieh-Cheng Hana,e, Chi-Ang Tsenga,b, Chan-Yi Dua,c, Abhijit Gangulya, Cheong-Wei Chonga, Sheng-Bo Wanga, Chi-Feng Lind, Sheng Hsiung Change, Chao-Chin Suc, Jiun-Haw Leed, Kuei-Hsien Chena,b, and Li-Chyong Chena,*

aCenter for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

bInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan

cInstitute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan

dInstitute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

eResearch Center for New-generation Photovoltaics, National Central University, Taoyuan 32001, Taiwan.

*Corresponding authors. Tel.: +886-2-33665249, Fax: +886-2-23655404

E-mail address: chenlc@ntu.edu.tw
Page S2

Fig. S1 AFM images of the (a) pristine and (b) PFAS (0.5%) modified PEDOT:PSS layers. Images of contact angle measurements of the (c) pristine and (d) PFAS (0.5%) modified PEDOT:PSS surfaces.
Fig. S2 AFM images of pentacene films deposited on (a) pristine PEDOT:PSS and (b) PFAS-treated PEDOT:PSS, at various thickness of pentacene films.
Fig. S3 Effect of PFAS concentration in chlorobenzene solution on the device performance of pentacene-based small-molecule organic solar cells: UV-VIS absorption spectra.
Page S5

Fig. S4 AFM images of pentacene films deposited on (a) pristine PEDOT:PSS and (b) PFAS-treated PEDOT:PSS, after thermal annealing at various temperatures.