Bioreducible Polymersomes for Intracellular Dual-Drug Delivery

Thavasyappan Thambia, V.G. Deepagana, Hyewon Koa, Doo Sung Leea, and Jae Hyung Parka,b,*

aDepartment of Polymer Science and Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

bGraduate School of Health Sciences and Technology, Sungkyunkwan University, Suwon 440-746, Republic of Korea

*Corresponding author:
Jae Hyung Park, Ph.D.
Department of Polymer Science and Engineering
College of Engineering
Sungkyunkwan University, Suwon 440-746, Republic of Korea
Tel: +82-31-290-7288; fax: +82-31-290-7309; e-mail: jhpark1@skku.edu
Fig. S1. Synthetic route for PEG-b-PLys-b-PCL block copolymer.
Fig. S2. 1H NMR spectra of PEG-b-PLys-b-PCL and its intermediates. *Indicates the peak from the solvent.
Fig. S3. UV-vis spectra of PEG-\textit{b}-PLys(Z)-\textit{b}-PCL and PEG-\textit{b}-PLys-\textit{b}-PCL triblock copolymers.

Fig. S4. Plot of pyrene intensity versus polymersome concentrations.
Fig. S5. UV-vis spectra of dual-drug-loaded polymersomes.

Fig. S6. Confocal laser scanning microscopic image of the SCC7 cell incubated with DOX-SS-PM.