Core-crosslinked Amphiphilic Biodegradable Copolymer based on the Complementary Multiple Hydrogen Bonds of Nucleobases: Synthesis, Self-assembly and in vitro Drug Delivery

Huihui Kuang, a,b Suhong Wu, a,b Fanbo Meng, a,c Zhigang Xie, a Xiabin Jing, a Yubin Huang a

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
b Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China
c The Cardiology Department of China-Japan Union Hospital of Jilin University, No. 126 Xiantai Str., Changchun 130033, P. R. China

* Correspondence to: Yubin Huang, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China. Tel & Fax: +86-431-85262769; E-mail: ybhuang@ciac.jl.cn

** Co-correspondence to: Fanbo Meng, The Cardiology Department of China-Japan Union Hospital of Jilin University, No. 126 Xiantai Str., Changchun 130033, P. R. China. Tel & Fax: +86-13159757035; E-mail: mengfb@jlu.edu.cn
Figure S1. GPC spectra of mPEG-b-P(\(\text{LA}_{3}\)-co-MAC\(_{11}\)) (A), mPEG-b-P(\(\text{LA}_{8}\)-co-MAC\(_{6}\)) (B) and mPEG-b-P(\(\text{LA}_{13}\)-co-MAC\(_{2}\)) (C).

Figure S2. FT-IR spectra recorded at room temperature in the range of 1800–1710 cm\(^{-1}\) for mPEG-b-P(\(\text{LA}_{3}\)-co-MPT\(_{22}\)) in the bulk state in the presence of different content of mPEG-b-P(\(\text{LA}_{3}\)-co-MPA\(_{22}\)) (n(A)/n(T),mol/mol): (a) 0/10, (b) 3/7, (c) 4/6, (d) 5/5, (e) 6/4, (f) 7/3 and (g) 5/1.
Figure S3. 1H NMR of mPEG-b-(LA$_3$-co-MPA$_{22}$)/mPEG-b-(LA$_3$-co-MPT$_{22}$) micelle in D$_2$O.