Supplementary Information

Reduced Graphene Oxide-MnO$_2$ Hollow Sphere Hybrid Nanostructures as High-performance Electrochemical Capacitors

Hao Chen,a Shuxue Zhou,a Min Chena and Limin Wua,ab

aDepartment of Materials Science, bAdvanced Materials Laboratory, Fudan University, Shanghai 200433, China
Tel.: +86-21-65643795;
E-mail: lmw@fudan.edu.cn

Figure S1. SEM images of the as-synthesized (a) MnO$_2$ hollow spheres and (b) MnO$_2$ nanoparticles. (c) Nitrogen (77 K) adsorption/desorption isotherms and (d) BJH pore size distribution of as-synthesized MnO$_2$ hollow spheres and MnO$_2$ nanoparticles.
Figure S2. FTIR spectra of graphene oxide and MnO$_2$ HS powder.

Figure S3. XRD patterns of the as-prepared MnO$_2$ hollow spheres and nanoparticles.