Supporting Information

Regioselective 1,2,3-Biszazfulleroid: Doubly N-Bridged Bisimino-PCBM for Polymer Solar Cells

Boram Kim⁴,†, Junghoon Lee⁴,†, Jung Hwa Seo⁴, Fred Wudl⁵, Sung Heum Park*⁶, and Changduk Yang*⁴,f

[a] Interdisciplinary School of Green Energy and KIER-UNIST Advanced Center for Energy, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea).
[b] Department of Physics, Pukyong National University, Busan 608-737, (Korea).
[c] Center for Energy Efficient Materials, University of California Santa Barbara, CA 93106, USA,
d) Department of Materials Physics, Dong-A University, Busan 604-714, (Korea).
*E-mail: yang@unist.ac.kr, and spark@pknu.ac.kr,
§These authors contributed equally.

Contents

Figure S1. MALDI-MS spectrum of bisimino-PCBM.
Figure S2. ¹³C NMR spectrum for bisimino-PCBM in 3:1 CS₂/acetone-„d₆.
Figure S3. HOMO and LUMO of bisimino-PCBM.
Figure S4. Electrostatic charge distributions of bisimino-PCBM. This structure exhibits the broken symmetric geometry.
Figure S5. Current density versus voltage characteristics of P3HT:PCBM device
Figure S1. MALDI-MS spectrum of bisimino-PCBM.

Figure S2. 13C NMR spectrum for bisimino-PCBM in 3:1 CS$_2$/acetone-d_6.
Figure S3. HOMOs and LUMOs isosurfaces of bisimino-PCBM.

Figure S4. Electrostatic charge distributions of bisimino-PCBM. This structure exhibits the broken symmetric geometry.
Figure S5. Current density versus voltage characteristics of P3HT:PCBM device.

- $V_{oc} : 0.63 \text{ V}$
- $I_{sc} : 8.11 \text{ mA/cm}^2$
- Fill Factor: 0.66
- Efficiency: 3.4 %