Electronic Supplementary Information for

Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and its application as a highly selective and sensitive sensor for the detection of mercuric and iodide ions in aqueous media

Sudip Barman* and Mriganka Sadhukhan

School of Chemical Sciences, National Institute of Science Education and Research (NISER),

Bhubaneswar, Orissa - 751 005, India

*Corresponding author: E-mail: sbarman@niser.ac.in

1. Experimental

The characterizations of g-CNQDs were done using tapping mode of AFM (Asylum MFP-3D Atomic Force Microscope) and transition electron microscopy (TEM, JEOL JEM2010, operated at 200 kV). Powder X-ray Diffraction (p-XRD) patterns were performed on a Bruker DAVINCI D8 ADVANCE diffractometer equipped with Cu K α radiation ($\lambda = 0.15406$ nm). XPS measurements on the sample were done using a monochromatic Mg K α X-ray source (XPS VG Microtech). XPS sample were prepared by drop casting few drops of aqueous solution of g-

CNQDs on silicon substrate and drying at room temperature. UV-Visible spectra were recorded using a UV-Visible Spectrophotometer (Varian Cary 100 Bio). Fluorescence studies of g-CNQDs were carried out using a spectrofluorimeter (Perkin Elmer, LS 55). Time resolved fluorescence life time measurements were performed using a time-correlated single photon counting (TCSPC) spectrometer (Edinburgh, OB920). ¹³C and ¹H NMR spectra were recorded using a NMR Spectrometer (Bruker biospin 400MHz). ATR-FTIR measurements of aqueous solution of g-CNQDs were performed using a Perkin-Elmer Spectrum RXI FT-IR spectrophotometer equipped and a ZnSe crystal. The ATR-FTIR spectrum of g-CNQDs was determined by using few drops of aqueous solution of g-CNQDs on the ZnSe ATR surface. For ATR-FTIR titration measurements, aqueous solution of g-CNQDs was prepared by sonicating 5mg of g-CNQDs with 10 ml of water for 1hr. The concentration of mercuric and iodide ions in the aqueous solution of g-CNQDs for the ATR-FTIR titration were 0.002 (M) and 0.004 (M) respectively. The CHN analysis for the composition of g-CNQDs was recorded using TruSpec CHNS analyzer.

2. Quantum Yield Measurements

Quantum yield of g-CNQDs in different solvents were calculated according to following equation¹:

$$\Phi_{\rm S} = \Phi_{\rm S} \times (I_{\rm S}/I_{\rm R}) \times (\eta^2_{\rm S}/\eta^2_{\rm R}) \times (A_{\rm R}/A_{\rm S})$$

Where the Φ is the quantum yield, I is the integrated photoluminescence intensity (excitation wavelength is 340 nm), A is the optical density and η is the refractive index of the solvent. The subscript "S" refers to the sample, g-CNQDs and "R" for reference. Quinine sulfate in 0.1M H₂SO₄ was taken as a reference. It is known from literature that quantum yield of Quinine sulfate in 0.1M H₂SO₄ is 54%. The absorbance of the solution of g-CNQDs in different solvents and reference were kept below 0.10 at 340 nm. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

3. ¹H NMR Titration

Fig. S1. ¹H NMR spectra in the aliphatic region of (a) free g-CNQDs (4mg/mL) in DMSOwater (2:3, v/v) solution, (b) in the presence of mercuric percholrate salts (0.002M), (c) in the presence of mercuric perchlorate (0.002M) and potassium iodide(0.006M). The asterisks (*) denote the solvent peaks. The values with a bracket are the areas under the peaks.

4. Fluorescence life time of g-CNQDs in different solvents

Fluorescence life times were determined using time correlated single photon counting technique. The emission decay curves of g-CNQDs in different solvents are shown in Figure 3d and Figure S2. Decays were recorded for g-CNQDs at 400 nm emission at excitation of 330 nm. Decay curves were fitted using multi exponential model¹ using the following:

$$I(t) = \sum_{i=1}^{n} A_{i} \exp(-t / \tau_{i})$$

Where I(t) is the intensity usually assumed to decay as the sum of individual single exponential decays, A_i are the pre-exponential factors, τ_i are the decay times. The fluorescence decay curves of g-CNQDs in different solvents are fitted to triple exponential functions. The average life time (τ_{avg}) of g-CNQDs were determined by

$$\tau_{avg} = \frac{\sum_{i} A_{i} \tau_{i}^{2}}{\sum_{i} A_{i} \tau_{i}}$$

Following Fig. S2 and Table S1 prove the strong effects of the solvents on the fluorescence life time of g-CNQDs. This is due to the effect of polarity of solvent on energy states of the molecules.

Fig. S2. Fluorescence decay curve and exponential fitting curve of g-CNQDs in (a) polar, water and in (c) non-polar, toluene. IRF is instrument response function.

Table S1: Fluorescence decay time (τ) and pre-exponential factor (A) of g-CNQDs in various solvents.

Solvent	τ ₁ (Α ₁)	τ ₂ (Α ₂)	τ ₃ (Α ₃)	τ_{avg}	χ ²
Formamide	1.58 ns (0.666)	4.18 ns (0.3325)	20.23ns (0.0015)	3.27 ns	0.97
Water	0.71 ns (0.2927)	3.49 ns (0.5122)	6.10 ns (0.1951)	4.28 ns	0.99
Ethanol	2.67ns (0.7902)	6.03ns (0.2085)	83.93ns (0.0013)	6.43 ns	1.125
Benzene	1.52ns (0.4645)	8.94ns (0.5311)	184.5ns (0.0044)	30.84 ns	1.17
Toluene	1.55ns (0.4157)	8.94ns (0.5786)	197.9ns (0.0057)	38.95 ns	1.16

5. Effect of pH on Fluorescence Emission of g-CNQDs

Fig. S3 (a) pH dependent fluorescence spectra of g-CNQDs displaying the change of fluorescence intensity when pH is switched between 2 and 13; (b) plot of fluorescence intensity vs. pH of the medium; (Excitation wavelength =340nm).

Fig. S4 Plot shows the effects of Ionic Strength on Fluorescent intensity of g-CNQDs in water. pH of the solution is 6.0. The fluorescence intensity is invariant with added KCl solution.

7. Fluorescence Quenching Measurements

 ${\rm Hg}^{2+}$ ions quench the fluorescence emission of g-CNQDs in aqueous medium. The quenching of g-CNQDs by ${\rm Hg}^{2+}$ ions can easily be understood by a Stern-Volmer analysis. The Stern-Volmer constant, ${\rm K}_{\rm SV}$ is related to fluorescence intensities by the following Stern-Volmer equation¹:

$$F_0/F = 1 + K_{SV}[Q]$$

Where F_0 and F are the fluorescence intensities in absence and presence of quencher, respectively and [Q] is the concentration of quencher.

The Stern-Volmer plot of F_0/F versus [Q] is given in Fig. 5b and K_{SV} (=2.4 ×10⁷ M⁻¹) was calculated from the slope.

Fluorescence decay curves of g-CNQDs in presence Hg^{2+} ions of different concentrations are given in following Fig. S5. This plot shows the fluorescence life times of g-CNQDs are constant with added mercuric ions.

Fig. S5 Fluorescence decay profiles of g-CNQDs in presence of different concentration (5-30 μ M) of Hg²⁺ ions in aqueous medium. (λ _{Excitation} = 330 nm and $\Box \lambda$ _{emission} = 400 nm.)

8. ATR-FTIR and UV-Visible Spectroscopic Studies

Fig. S6 (a) ATR-FTIR (b) UV-Visible spectra of free g-CNQDs, in the presence of Hg^{2+} ions and in the presence of both Hg^{2+} and iodide ions.

9. C1s XPS Spectra of g-CNQD- $(Hg^{2+})_x$

Fig. S7 XPS spectra in the C 1s region of (a) free g-CNQDs, (b) after treatment with Hg^{2+} , (c) after addition of Hg^{2+} and iodides.

References

1. J. R. Lakowicz, *Principle of Fluorescence Spectroscopy* **1999**, Third Edition.