Supplementary Information

Analytical analysis

According to a previous analytical analysis (Han KH & Frazier AB, 2004, J Appl Phys 96: 5797-5802), the magnetic potential V around a circular ferromagnetic wire (Fig. S1) can be expressed as:

$$V = -r \frac{2\mu_B}{\mu_w + \mu_B} H_0 \cos \phi, \quad r < a$$ \hspace{1cm} (S1)

$$V = -r H_0 \cos \phi + \frac{1}{r} k a^2 H_0 \cos \phi, \quad r > a \quad \left(k = \frac{\mu_w - \mu_B}{\mu_w + \mu_B} \right)$$ \hspace{1cm} (S2)

where r and ϕ represent the cylindrical coordinate of the distance and angle, respectively; μ_B and μ_W are the permeabilities of the buffer solution and the ferromagnetic wire, respectively; H_0 is the external magnetic field; and a is the effective radius of the ferromagnetic wire. Then, the magnetic field \vec{H}_B around the wire can be expressed as:

$$\vec{H}_B = -\nabla V = -\frac{\partial V}{\partial r} \vec{a}_r - \frac{1}{r} \frac{\partial V}{\partial \phi} \vec{a}_\phi$$

$$= \left(H_0 \cos \phi + \frac{1}{r^2} k a^2 H_0 \cos \phi \right) \vec{a}_r + \left(-H_0 \sin \phi + \frac{1}{r^2} k a^2 H_0 \sin \phi \right) \vec{a}_\phi, \quad r > a$$ \hspace{1cm} (S3)
where \vec{H}_B represents the magnetic field in the buffer solution around the wire and \vec{a}_r and \vec{a}_ϕ are unit vectors for the r- and ϕ-direction in the cylindrical coordinate, respectively.

By substituting $\cos \phi = \frac{x}{r}$, $\sin \phi = \frac{z}{r}$ and $r = \sqrt{x^2 + z^2}$ into Eq. (S3), the magnetic field \vec{H}_B can be expressed as:

$$\vec{H}_B = \left[H_0 + \frac{ka^2 H_0 (x^2 - z^2)}{\left(x^2 + z^2\right)^2} \right] \vec{a}_x + \frac{2xka^2 H_0}{\left(x^2 + z^2\right)^2} \vec{a}_z, \quad (S4)$$

where x and z represent the Cartesian coordinate and \vec{a}_x and \vec{a}_z are unit vectors for the x- and z-direction in the Cartesian coordinate, respectively. When $\chi_p |\vec{H}_B| > M_{PS}$, the magnetic force \vec{F}_m on the beads is:

$$\vec{F}_m = \mu_B V_p M_{PS} \nabla |\vec{H}_B|, \quad (S5)$$

where χ_p represents the susceptibility of the magnetic beads, V_p is the volume of the magnetic beads, and M_{PS} is the saturation magnetization of the beads. The susceptibility χ_p and the saturation magnetization M_{PS} of the magnetic beads used for analytical and numerical simulations are 0.192 and 30 kA/m, respectively. According to Eq. (S5), the x- and z-directional magnetic
forces (Fig. S2) on a magnetic bead can be rewritten as:

$$F_{mx} = \mu_B V_p M_{PS} \frac{\partial |\vec{H}_B|}{\partial x}, \text{ and} \quad (S6)$$

$$F_{mz} = \mu_B V_p M_{PS} \frac{\partial |\vec{H}_B|}{\partial z}. \quad (S7)$$

Then, the x- and z-directional magnetic forces on a magnetic bead are

$$F_{mx} = -\frac{2V_p M_{PS} x ka^2 B_0}{(x^2 + z^2)^2 \sqrt{(x^2 + z^2)^2 + 2ka^2(x^2 - z^2)}} \left(x^2 - 3z^2 + ka^2 \right), \text{ and} \quad (S8)$$

$$F_{mz} = -\frac{2V_p M_{PS} z ka^2 B_0}{(x^2 + z^2)^2 \sqrt{(x^2 + z^2)^2 + 2ka^2(x^2 - z^2)}} \left(3x^2 - z^2 + ka^2 \right). \quad (S9)$$
Fig. S1 Cylindrical coordinates of a magnetic bead with respect to a circular ferromagnetic wire in a uniform external magnetic field, \(H_0 \).

Fig. S2 Direction of the magnetic force on a magnetic bead located around a circular ferromagnetic wire in a uniform external magnetic field, \(H_0 \).
Analytical and numerical simulations for the \(z \)-directional magnetic force

Fig. S3 Analytical and numerical values for the \(z \)-directional magnetic force for varying levitation heights \(z \) of a magnetic bead. The hatched square in the inset represents the cross-section of the square ferromagnetic wire, taken perpendicular to the \(x \)-axis in Figure 1A.
Comparison of the analysis times for a standard RT-PCR method and for the proposed high-speed RT-PCR method

Fig. S4 Process times obtained using a standard RT-PCR method and using the proposed high-speed RT-PCR method for diagnosing blood borne disease. The information on the left of the flow chart provides some general process times for the various methodologies executed with a sample. On the right, we present the process times of the proposed high-speed RT-PCR method.