ELECTRONIC SUPPLEMENTARY INFORMATIONS (ESI)

Silicate Glass Coated Microchannels through Phase Conversion Process for Glass-Like Electrokinetic Performance

Ming Li and Dong-Pyo Kim*

National Creative Research Center of Applied Microfluidic Chemistry, Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea

Scheme S1 Molecular structures of (a) photo initiator (Irgacure 369), and (b) thermal initiator (dicumyl peroxide).

(a)

\[
\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{O} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3
\end{array}
\]

Irgacure 369

(b)

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{N} \\
\text{CH}_2 \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3
\end{array}
\]

dicumyl peroxide

Scheme S2 Mechanism of SiOH induced redistribution of Si-O and Si-C bond during hydrolysis of AHPCS under alkali condition.\(^1\)
Fig. S1 ATR spectra of AHPCS film (600 nm-thick) (a) before and (b) after hydrolysis (0.5 M NaOH, 3 h at 25 °C).

Fig. S2 SEM image of AHPCS coating on polyimide (PI) film (1 wt. % in cyclohexanone, cured under ELC-4100 UV light system (20 mW/cm²) for 20 min).

Fig. S3 AFM images of (a) cured AHPCS film and (b) hydrolyzed AHPCS film.
Fig. S4 CE reproducibility test conducted by 13 times injection of 10 μM FITC-Phe into (a) AHPCS derived silicate glass coated PDMS channel and (b) native PDMS channel aged for 1 week at room temperature after plasma bonding.

Fig. S5 Retention time variation upon 100 times repeated injection of 10 μM FITC-Phe into AHPCS derived silicate glass coated PDMS channel (Laplace pressure effect of the round-shape reservoirs on the peak intensity was not considered during the multiple injections and separations).

SI Reference