Temperature-Controlled 'Breathing' of Carbon Dioxide Bubbles

Ethan Tumarkin,a Zhihong Nie,a,b Jai Il Park,a Milad Abolhasani,ad Jesse Greener,a Barbara Sherwood-Lollar,c Axel Guenther,d Eugenia Kumacheva*a,e

a Department of Chemistry, University of Toronto, 80 Saint George street, Toronto, Ontario, M5S 3H6, Canada
b Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
c Department of Geology, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada.
d Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, M5S 3G8, Canada
e Institute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada

1. Schematic of the flow-focusing MF device

![Schematic of the flow-focusing MF device](image)

Figure S1. Schematic of the MF bubble generator. \(W_g = 50 \, \mu m, \, W_a = 100 \, \mu m, \, W_o = 20 \, \mu m, \, W_c = 200 \, \mu m, \, L_1 = L_2 = L_3 = 135 \, mm. \) The total channel length of the device (from the orifice to the outlet is 450 mm). The height of the MF device is 120 \(\mu m. \)
2. Design of accessories for temperature-control in the MF device

![Figure S2](image)

Figure S2. Schematic of the accessories for the temperature control in the MF device. The position of the heating module and the cooling module are placed below the MF device fabricated in PDMS: (a) Side view, and (b) perspective view of the setup. The cooling module is inserted underneath Regions 1 and 3, and the orifice, the heating module is applied to Region 2 (Fig. 2a). The temperature of 0 °C of the cooling module is controlled by flowing through it a mixture of glycerol and water (1:4 v/v) using a temperature-controlled water circulator (Neslab RTE-040). The temperature of the heating module of 35 °C is controlled by a temperature controller (TE-Tech).

3. Modeling of temperature of the liquid traveling through microfluidic channels

Numerical simulations of the temperature of the liquid moving through the MF device was performed using the multiphysics program Comsol (version 4.0a, Comsol, Inc., USA). An
unstructured mesh was generated using a resolution of the narrowest region of 0.5. The resultant mesh consisted of 109,324 points and 994,537 elements. Convective heat loss was considered at the outer surfaces of the MF device, that is, the top, the bottom, and the side walls of the device. Boundary conditions as follows:

Inlet liquid flow rate: 2.5 mL/hr
Outlet pressure: 1 atm, 0 kPa gauge pressure
Temperature of the liquid at the inlet: 23 °C

4. Variation in the volume of CO₂ bubbles in deionized water at constant temperature

Figure S3. Variation in CO₂ bubble volume at 23 °C, plotted as a function of the distance from the orifice. The bubbles were generated at a $P_{CO_2}=48.3$ kPa and $Q_c=2.5$ mL/hr.
5. Variation in bubble size in DEPG at constant temperature

Figure S4. Variation in bubble volume in DEPG, plotted as a function of the distance from the orifice at 23 °C. $P_{CO_2} = 82.7$ kPa, $Q_c = 2.5$ mL/hr. The scale bar is 50 µm.