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S1 Liquid film calculations 
At low capillary numbers considered here, Ca < 10-2, the liquid film thickness at the walls, fw, and at the corners, fc, of the 

microchannel (Fig.S1a), is only a function of the channel hydrodynamic diameter, dh, according to the experimental results of 
Kolb and Cerro1 and Fries et al.2: 
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Fig. S1 (a) Cross-sectional view of a gas plug moving in a microchannel. The liquid films at the walls and corners are illustrated. 
(b) Gas plug break-up  and streamlines of the liquid films surrounding the gas plugs are schematically shown.  
 

For the liquid film thicknesses, the cross-sectional areas associated with the films at the side walls and corners are 3456 m2 and 

8050 m2, respectively. The amount of liquid at the corners is 2.33 times larger as compared to the side wall regions. Considering 

a 5 mm long gas plug, the cumulative liquid volume (prior to dissolution taking place) associated with both film regions is 

5.06×10-8 L, a volume that is approximately equal to the liquid slug volume, VS = 5.85×10-8 L. As a result of this analysis, we 

expect the liquid content of the films regions to become saturated right at the location where bubble formation occurs. The 

(remaining) gas-liquid mass transfer is therefore practically taking place through the plug cap regions only. To support this claim, 

the saturation times/lengths for the both films at the walls and corners were calculated assuming only diffusive transport in the 

films. The diffusion coefficient of carbon dioxide in DMC, DCO2,DMC, was estimated using a relationship suggested by Versteeg 

and Swaalj,3, 4 
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where DCO2,Water is the diffusion coefficient of carbon dioxide molecules in water at the same temperature as the CO2 – DMC 

mixture, DMC(T) = 0.598×10-3 (Pas)5 and Water(T) = 1.94×10-9 (m2/s)6 are the viscosities of the working fluids at the 

temperature T =298K.  
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Using Eqs. (1) and (2), diffusion times associated with the liquid films, tD,w, and the corners, tD,c, can be calculated as: 
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The diffusion times required to saturate the liquid films at the walls and corners are 0.013 s and 0.32 s, respectively. Diffusion 

times can be converted into length scales by multiplying with UB. The saturation length for the liquid film at the walls and 

corners are 0.26 mm and 6.4 mm, respectively. Therefore, for a 5 mm long gas plug, the liquid films at the walls and corners will 

be saturated while the gas plug break-up occurs. As shown in Fig. S1a, the liquid within the saturated film regions follows the 

illustrated streamlines and stays within the liquid film boundaries. Consequently, the mass transfer in the liquid film sections can 

be neglected and it can be assumed that the mass transfer exclusively takes place at the plug caps. 

S2 Plug and liquid slug volume calculations 

 
After the plug and the liquid slug lengths have been determined from image processing at six different positions X along the flow 
channel (Fig. S2), the plug and the liquid slug volumes, (VB)D,P and VS, were evaluated using the following equations: 
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where f  is the thickness of the liquid film surrounding the plug, H is the channel height and w is the channel width. 

 

Fig. S2 Schematic of the plug length, the liquid slug length and the liquid film thickness in a microchannel. 

 

S3 Parameter space associated with initial flow conditions 

The automated microfluidic system was utilized to systematically investigate how the initial plug length, the initial slug length 

and the initial plug velocity of different gas-liquid pairs can be interrelated for a given liquid flow rate and gas inlet pressure. The 

obtained results are summarized in Fig. S3. 

Inverse of liquid volume fraction, (QG+QL)/QL, the inverse of gas volume fraction, (QG+QL)/ QG, and the total gas and liquid 

superficial velocities, jL+jG characterize the initial working space of a gas-liquid segmented flow.7, 8 At each experimental 

condition, i.e. for a fixed QL and PG, the gas flow rate was measured using the method described in the paper. As shown in Fig. 

S3a-c, LB0, LS0 and UB0 were linearly related to the inverse of liquid and gas volume fractions and total liquid and gas superficial 

velocities (Eq. 6). The resulting lines from the curve fittings of the experimental data were used to find the initial working space 

of the system (Fig. S3d).  
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The resulting working surface of our segmented flow system for the case of nitrogen and ethanol was: 
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Fig. S3 (a) Variation of the non-dimensionalized initial slug length as a function of the inverted volume fraction of the gas phase for different gas 

and liquid superficial velocities. (b) Variation of the initial plug length versus the inverse of the liquid volume fraction. (c) Variation of the initial 

plug velocity as a function of the gas superficial velocity and the liquid superficial velocity. (d) The initial working plane of the segmented flow. 

Red color: 3D scatter data of the calculated plane using the gas and liquid volume fractions. Black color: scatter plot of the measured data points. 

The working fluids are nitrogen and ethanol.  

Figure S3(d) suggests that the surface corresponding to Eq. (7) represents all measured data points well. We use the obtained 

parameter space related to the conditions at the inlet of the segmented flow channel, X0, to systematically study the effects of the 

different inter-related parameters, e.g., the plug length, the slug length and the plug velocity. Using the above mentioned initial 

working space, the dynamically adjusted segmented flow parameters, LB0, LS0 and UB0 can be maintained constant separately. 

 

S4 Numerical simulation of the temperature distribution inside the microchannel 

To determine the temperature distribution along the flow direction a three-dimensional numerical simulation using a commercial 

multiphysics program (Comsol, version 4.2, COMSOL Inc., Burlington, MA) was conducted assuming a single phase flow of the 

physical solvent (DMC) inside the silicon microfluidic device. Figure S4 shows the two-dimensional temperature distribution 

across the device. An unstructured mesh was generated with the resolution of the narrowest region of 5 elements, resulting in 

5,860,889 elements. Convective heat losses were considered at all outer surfaces of the microreactor (i.e. external natural 

convection for bottom of the silicon, top of the Borofloat layer and the side walls). The following boundary conditions were 

imposed: Temperatures of the heating element and inlet of DMC were assumed to be 320K and 298 K, respectively. Thermal 

conductivities of 163 W·m-1·K-1, 1.2 W·m-1·K-1 and 0.1627 W·m-1·K-1 were used for silicon, Borofloat and DMC respectively. 

QDMC= 30 l/min was used at the inlet. DMC properties were chosen according to the reported values by Tundo et al.5 A direct 

(7) 
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linear solver (MUMPS) was employed to obtain the convergent steady-state temperature distribution. The temperature profile 

along the center of the microchannel at a location immediately after the T-junction is plotted in Fig. S4b. 

 

Fig. S4 (a) 3D temperature distribution of the microfluidic system, using a peltier-based heating element attached to the silicon side. Scale bar is 

10 mm. (b) Temperature profile along the highlighted red line after the T-junction at the middle of the microchannel. 

As shown in Fig. S4b, the temperature of DMC inside the microchannel reached the uniform target temperature of the 

associated with the segmented flow section of the silicon device prior to entering the T-junction. 

 

S5 Segmented flow of CO2-DMC at different temperatures 

As the Henry’s constant for each gas-liquid pair is a function of temperature and pressure, the segmented flow images of CO2-

DMC that are shown at three different temperatures and a fixed DMC flowrate, and CO2 inlet pressure in Fig. S5 display the 

effect of the increasing temperature on CO2 plug dissolution. It can be seen that by increasing temperature, the volume of 

dissolved CO2 plugs decreases. 

 

Fig. S5 Regular segmented flow images of CO2-DMC for three different temperatures. (a) T=299 K, (b) T=301 K, and (c) T=308 K. jL=9.26 

mm/s, PG=130 kPa. 
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S6 Pressure drop calculations 

To estimate the plug volume expansion due to the pressure decrease along the flow direction, the pressure drop correlation 
proposed by Kreutzer et al. 9, 10 was used: 
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where P is the pressure drop along the microchannel, L is the total liquid volume fraction in the microchannel, fslug is the 

friction factor for a segmented flow, Re is Reynolds number, Ca is Capillary number and  is the liquid density. Using Eqs.8-10, 

the pressure drop and the plug volume expansion along the microreactor for jL=7.4 mm/s, PG =130 kPa, and UB =63 mm/s are 

calculated and plotted in Figs. S6a and b. 

 

Fig. S6 (a) Pressure drop along the microchannel for fslug=1.13 and L=0.28. (b) Plug volume expansion due to the pressure drop. 

The initial plug length was 3.85 mm. 

 
S7 Microfabrication 

The process flow for the fabrication of the designed silicon-based MF device, implemented the shadow mask (nested mask 11) 

process. The process flow is shown in Fig. S7 and started with wafer cleaning (RCA1) and thermal growth of a 1  m thick oxide 

layer. A thin resist (Microposit S1813, Shipley Company, Marlborough, MA, USA) was used to pattern the front oxide layer for 

the pressure drop channels (75  m deep). The thin resist was removed (Piranha), and a thick resist (AZ9245, Clariant 

Corporation, Somerville, NJ, USA) was spin coated and patterned for the deep microchannels (300 m). The oxide layer was 

then etched using buffered oxide etchant (BOE). At this point of the process, two masks were placed on top of each other (nested 

mask), the deep channel patterns on the oxide layer were opened, and the shallow channel patterns were covered by the thick 

positive resist. The lithographically patterned silicon wafer was placed in the deep reactive ion etching (DRIE) chamber (Tegal 

SDE1100, Tegal Corporation, Petaluma, CA, USA), and the deep features were etched for 225 m. The thick resist layer was 

then removed inside the DRIE chamber using oxygen plasma cleaning for 5 min. By removing the thick resist layer, the shallow 

channel patterns were exposed. DRIE was continued for 75 m to etch the shallow microchannels, and finish etching of the deep 

microchannels. 

The oxide layer was removed and a new 1 m oxide was grown on both sides of the patterned silicon wafer. A thick resist 

was spin coated on the back side of the wafer and a thin resist layer was used to protect the etched front side of the wafer during 

BOE. The inlet and outlet holes were patterned on the back side. Using DRIE, the back side of the silicon wafer was etched 

350 m, and inlet and outlet holes were connected to the front side. 

The oxide layer was removed using BOE, and a fresh 500 nm oxide layer was grown on the finalized silicon wafer for 

oxidation. The wafers were then anodically bonded to a 6" Borofloat 33 wafer on wafer level. Individual microfluidic devices 

were isolated from the wafer using a die saw. 

(8) 
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Fig. S7 Process flow for the fabrication of silicon-based MF devices. 
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S8 CO2 plug shrinkage (Fig. 6a) 

 

Fig. S8 Carbon dioxide plug evolutions measured at six locations along the flow direction for a constant initial plug length, 2.55 mm, and 

variable initial plug velocities. Experimental conditions are: jL  = 5.55 mm/s, PG  = 118 kPa and UB=25.2 mm/s (○);  jL  = 7.4 mm/s, PG  = 120 kPa 

and UB=32.4 mm/s (●); jL  = 9.3 mm/s, PG  = 123 kPa and UB=36 mm/s (□); jL  = 11.1 mm/s, PG  = 127 kPa and UB = 47.2 mm/s (■); 

jL  = 12.9 mm/s, PG  = 129.6 kPa and UB=55.7 mm/s (∆); jL  = 14.8 mm/s, PG  = 133 kPa and UB=60.4 mm/s (▲); jL  = 16.4 mm/s, PG  = 135 kPa and 

UB = 67.9 mm/s ();jL  = 18.4 mm/s, PG  = 138 kPa and UB = 79.4 mm/s ();jL  = 20.4 mm/s, PG  = 145 kPa and UB = 96 mm/s ( ); 

jL  = 22.2 mm/s, PG  = 148 kPa and UB = 99 mm/s (◄); jL  = 25.9 mm/s, PG  = 154 kPa and UB=118 mm/s (); jL  = 29.6 mm/s, PG  = 162 kPa and 

UB=142 mm/s (►); jL  = 33.3 mm/s, PG  = 166 kPa and UB =160 mm/s (); jL  = 37.0 mm/s, PG  = 170 kPa and UB=177 mm/s ();  jL  = 40.7 mm/s, 

PG  = 174 kPa and UB=208 mm/s (); jL  = 46.3 mm/s, PG  = 184 kPa and UB=242 mm/s ();  jL  = 51.9 mm/s, PG  = 194 kPa and UB = 281 mm/s 

(). 

S9 Sources of uncertainties in the solubility data 

The gas dissolution at the front cap is a source of systematic error in the Henry's constant measurement. Assuming purely 

diffusive transport during the dissolution and a saturated concentration boundary layer around the cap, the penetration depth, dcap, 

can be estimated as: 

  mm/sm
mm/s

mmDtd DMCCOupbreakcap  5.23 1035.2 1075.2
 20

 4 529

, 2


   

where tbreak up is the gas plug break up time. The volume of liquid contained within the calculated penetration depth is 2.13×10-11 

L. Considering Henry’s law and the mole fraction of dissolved gas, defined as x=ng/(ng+nl), ng=2.53×10-10 moles of CO2 are 

dissolved in the liquid, resulting in a 0.04 % error in determining Henry’s constant. The accuracy of the digital pressure regulator 

and the temperature controllers were 0.5%, and 0.1%, respectively. For the pixel size of the CCD camera (4.86 µm ) translating 

to a distance of 7 µm in the object plane, at least 2 pixels (14 µm) were required to detect an interface by the Matlab-based image 

processing code. For a 5mm long plug, the uncertainty in measuring LB was 0.28 %. The accuracy of the 300 m wide channel, 

with a chrome resolution of 0.5 µm for lithography, was 0.16%. The channel depth variation after the DRIE etch was ±2 m, 

resulting in a 0.66 % error for the 300 m deep channel. 

(11) 
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Considering all the aforementioned uncertainties, we estimate the total systematic experimental error to be approximately 3.3 %. 

Video S10. Video of carbon dioxide dissolving into DMC in the microfabricated silicon-based MF device. The entire MF device 

is shown here. jL=4.63 mm/s, PG=117 kPa, and T=299 K. 

Video S11. Video of the field of view that was used for solubility measurement and mass transfer characterization of carbon 

dioxide dissolving into DMC. jL=5.55 mm/s, PG=114 kPa, and T=299 K. 
 

 

S12 Experimental Setup 
 

 

 

Fig. S12 Experimental Setup. 
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