Lab on a Chip

Electronic Supplementary Information

Capture, Isolation and Release of Cancer Cells with Aptamer-functionalized Glass Bead Array

Yuan Wan1,2,3,§, Yaling Liu4,§, Peter B. Allen5, Waseem Asghar2,3,6, M. Arif Iftakher Mahmood2,3,6, Jifu Tan4, Holli Duhon5, Young-tae Kim1,3, Andrew D. Ellington5 and Samir M. Iqbal1,2,3,6,7,*

1Department of Bioengineering, 2Nano-Bio Lab, 3Nanotechnology Research and Teaching Facility, University of Texas at Arlington, Arlington, Texas; 4Department of Mechanical Engineering and Mechanics, Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania; 5Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas; 6Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas; 7Joint Graduate Committee of Bioengineering Program, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, Texas

§ These authors contributed equally to this work

*Corresponding Author: Samir M. Iqbal, Ph.D.

4 Figures

1 Table
Figure S1. (a) The numerical model of a GB array channel with dimensions 346 μm (width) X 900 μm (length) X 60 μm (height). The GB loaded channel is used to analyze velocity pattern, shear stress, stream lines, trajectory and cell adhesion probability. The flow rate is set to 1 ml h⁻¹ at the inlet and the other side is open boundary. (b) The device structure and dimensions of 60 μm thick Hele-Shaw device made with SU8 master. The plot shows gradually decreasing shear stress along the flow axis.
Figure S2. Shear stress on the surface of a glass bead. The maximum shear stress appears on the top of the bead and gradually decreases from top to bottom.
Figure S3. (a) Typical trajectories of cells injected in the microfluidic device; (b) Binding efficiency of cells as a function of time for devices with different separation distances. The shear stress increased from 0.237 Pa to 0.303 Pa when the distance between adjacent GBs decreased from 50 to 20 μm, and binding efficiency increased from 1% to 4%. 
Figure S4. The number of hGBM cells binding to anti-EGFR and mutant aptamer functionalized glass substrates at increased shear stresses.
Table S1. Peclet Numbers corresponding to the shear stress depicted in Fig. S4 of ESI.

<table>
<thead>
<tr>
<th>Shear Stress (dyn/cm²)</th>
<th>0.2</th>
<th>0.29</th>
<th>0.38</th>
<th>0.47</th>
<th>0.57</th>
<th>0.66</th>
<th>0.75</th>
<th>0.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pe (x10^5)</td>
<td>2.0455</td>
<td>2.9659</td>
<td>3.8864</td>
<td>4.8068</td>
<td>5.8295</td>
<td>6.75</td>
<td>7.6705</td>
<td>8.5909</td>
</tr>
</tbody>
</table>