Supplementary Information:

Microcapillary-assisted dielectrophoresis (µC-DEP) for single-particle positioning

Yuan Luo,¹ Xu Cao,² Pingbo Huang,²,³,⁴ and Levent Yobas*¹,³

¹Department of Electronic and Computer Engineering,
²Division of Life Science,
³Division of Biomedical Engineering,
⁴State Key Laboratory of Molecular Neuroscience,
Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong SAR, China

*Corresponding Author: eelyobas@ust.hk

Figure S1: Average number of beads trapped per microcapillary for various conductivity values of the bead medium and the electrode medium (figure legend). The excitation waveform was at 71V-rms, 500kHz. Each column height and the respective error bar indicate the mean and ± one standard deviation of seven to ten repeat measurements.

![Figure S1](image)

Video I: Two beads in a row flowing through the sample microchannel at a speed of 0.5mm/s where the second bead was selectively captured at one of the microcapillaries by
turning the activation voltage on as soon as the first bead cleared off the trapping region (excitation: 22.4V-rms at 500kHz).

Video II: Individual CHO cells flowing through the sample microchannel at a speed of 200µm/s were captured at the either microcapillary after the activation voltage was turned on (excitation: 71V-rms, 500kHz).

Video III: Individual CHO cells already captured at the microcapillaries through pDEP shown forming pearl chains with the passing by cells under dipole interactions (excitation: 71V-rms, 500kHz).