Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size

Jaime J. Juáreza*, Pramod P. Mathab,c, J. Alexander Liddlec†, and Michael A. Bevana†

aChemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, bMaryland Nanocenter, University of Maryland, College Park, MD 20742, cNational Institute for Standards and Technology, Center for Nanoscale Science and Technology, 100 Bureau Drive, Gaithersburg, MD 20899

Supplemental Information

Movies
200_target.avi (3MB): 200 particle crystal assembled using EPEO vs. NDEP.
150_target.avi (2.5MB): 150 particle crystal assembled using EPEO vs. NDEP.
100_target.avi (2.5MB): 100 particle crystal assembled using EPEO vs. NDEP.
50_target.avi (2MB): 50 particle crystal assembled using EPEO vs. NDEP.

Electric Field

The electrodes in a quadrupole device (modeled as four point poles) have an analytical electric potential given by,1

\begin{equation}
V(x, y) = \frac{V_o}{2} \ln \left[\frac{x^4 + y^4 + 2 \left(x^2 - y^2 + x^2 y^2\right) + 1}{x^4 + y^4 + 2 \left(y^2 - x^2 + x^2 y^2\right) + 1} \right]
\end{equation}

\begin{equation}
E = -\nabla V(x, y)
\end{equation}

where \(x\) and \(y\) are non-dimensional coordinates normalized by half the electrode gap (with the origin at the quadrupole center), \(V\) is the electric potential, \(V_o\) is the magnitude of the applied voltage, \(E\) is the electric field vector, and \(E_{mag} = |E|\) is the magnitude of the local electric field.

Dielectrophoresis

At high frequencies, induced dipoles on particles interact with the nonuniform electric field (Eq (1)). The in-plane spatial variation of this scalar potential energy \(u^{dep}(x, y)\) and the associated time-averaged DEP force \(F^{dep}\) due to an inhomogeneous electric field \(E\) is given by,2,3

\begin{equation}
u^{dep}(x, y) = -2kT \hat{a} f_{cm}^{-1} |E^*|^2
\end{equation}

\begin{equation}
F^{dep} = -\nabla u^{dep}(x, y)
\end{equation}

where \(k\) is Boltzmann’s constant, \(T\) is absolute temperature, \(E^* = E/E_0\) is the local normalized electric field, \(E_0 = 0.5V_{pp}/d_g\) is the normalization constant with \(d_g\) being separation between cross...

* Performed part of research at National Institute for Standards and Technology.
\† To whom correspondence should be addressed: mabevan@jhu.edu, liddle@nist.gov
electrode pairs and \(V_{pp} \) is the applied AC field’s peak-to-peak voltage. The ratio \(\lambda \) of the relative polarization and Brownian energies\(^4\) is given as \(\lambda = \pi \varepsilon_m a^3 (f_{cm} E_0)/kT \) where \(a \) is the radius of the colloidal particle. The Clausius-Mosotti factor, \(f_{CM} \), determines whether the particle moves towards the field minima or maxima\(^3\) and is given by,

\[
f_{cm} = \text{Re} \left[\left(\tilde{\varepsilon}_p - \tilde{\varepsilon}_m \right) / \left(\tilde{\varepsilon}_p + 2\tilde{\varepsilon}_m \right) \right]
\]

where \(\tilde{\varepsilon}_m \) and \(\tilde{\varepsilon}_p \) are complex particle and medium permitivities of the form, \(\tilde{\varepsilon} = \varepsilon - i\sigma/\omega \), where \(\sigma \) is conductivity, and \(\omega \) is angular frequency. Particle conductivity is given as \(\sigma_p = 2K_n/a \), where \(K_n \) is surface conductance.\(^5\) When \(f_{cm} < 0 \) (\(f_{cm} > 0 \)) the particle is less (more) polarizable than the medium and is transported to the field minimum (maximum).

Electrophoresis and Electroosmosis

A potential difference applied at electrode surface causes ions with electrostatic double layers to move and drag fluid, a transport mechanism referred to as electroosmosis. Simultaneously, charged colloids undergo electrophoresis when they become attracted to electrodes of opposite polarity.\(^6\) The superposition of electrophoresis and electroosmosis is linearly proportional to the local electric field,\(^7\)

\[
V_{EPEO} = \frac{\varepsilon_m (\zeta_p - \zeta_w)}{4\pi \mu} E
\]

\[
F_{EPEO} = 6\pi \mu a V_{EPEO}
\]

where \(\mu \) is the medium viscosity and the zeta potential, \(\zeta \), where the subscripts denote particle (p) and wall (w). The force, \(F_{EPEO} \), is the net electroosmotic flow scaled by the Stokes drag coefficient.

Size Dependent Crystallinity Order Parameter

To compute the size dependence of \(\langle C_6 \rangle \) for 2D hexagonal close packed particles with a hexagon morphology, the total number of particles, \(N \), based on the number of shells, \(S \), (see Fig S1A) is given by,\(^8\)

\[
N = 3S(S + 1) + 1
\]

which can be inverted to obtain the number of shells based on the number of particles as,

\[
S = -(1/2) + \left[(1/3)(N - 1) + (1/4) \right]^{1/2}
\]

The number of interior, vertex, and edge (non vertex) particles can be found from Eq (7) as,

\[
N_{\text{interior}} = 3S(S - 1) + 1
\]

\[
N_{\text{edge}} = 6S - 6
\]

\[
N_{\text{vertex}} = 6
\]

which allows \(\langle C_6 \rangle \) to be computed using individual particle \(C_6 \) values shown in Fig S1A as,

\[
\langle C_6 \rangle_{\text{HEX}} = N^{-1} \left[6N_{\text{interior}} + 4N_{\text{edge}} + 3N_{\text{vertex}} \right] = N^{-1} 6 \left(3S^2 + S \right)
\]
Although the above equations are intended for an integer number of shells, Eq (8) can be substituted for \(S \) on the right hand side of Eq (10) to compute \(\langle C_6 \rangle \) as a continuous function of \(N \).

To compute the size dependence of \(\langle C_6 \rangle \) for 2D hexagonal close packed particles with a square morphology, \(N \), can be related to the number of particles on one side of the square, \(S_p \), (see Fig S1B) as,

\[
N = S_p (S_p + 1)
\]

which can be inverted as,

\[
S_p = -(1/2) + \left[N + (1/4)\right]^{1/2}
\]

The following formulas capture the number of particles having different individual \(C_6 \) values as,

\[
\begin{align*}
N_6 &= (S_p - 2)(S_p - 1) \\
N_5 &= S_p - 1 \\
N_4 &= 2(S_p - 2) \\
N_3 &= S_p + 1 \\
N_2 &= 2
\end{align*}
\]

where the number of interior, \(N_I \), and edge, \(N_E \), particles can be found from Eq (13) as,

\[
\begin{align*}
N_I &= (S_p - 2)(S_p - 1) \\
N_E &= 4S_p - 2
\end{align*}
\]

Eq (13) also allows \(\langle C_6 \rangle \) to be computed using individual particle \(C_6 \) values shown in Fig S1B as,

\[
\langle C_6 \rangle_{SQ} = N^{-1} \sum_{x=2}^{6} xN_x = N^{-1} \left(6S_p^2 - 2S_p - 2\right)
\]

which can be computed as a continuous function of \(N \) by substituting Eq (12) for \(S_p \) on the right hand side of Eq (15).

Size Dependent Radius of Gyration

To compute the radius of gyration, \(R_g \), for 2D hexagonal close packed particles within regular polygon morphologies, it is useful to consider the area, \(A_{HCP} \), occupied by \(N \) hexagonal close packed disks with area fraction, \(\phi_{HCP} = 6^{-1} \pi 3^{0.5} \), as,

\[
A_{HCP} = \pi a^2 N \phi_{HCP}^1 = 6 \cdot 3^{-0.5} a^2 N
\]

which can be equated to the area of a square, \(A_{SQ} = L_{SQ}^2 \), to determine the length of each side vs. \(N \) as,

\[
L_{SQ} = 6^{0.5} 3^{-0.25} a N^{0.5}
\]

which can then be used in the expression for \(R_g \) for a square as,
Similarly, A_{HCP} in Eq (16) can be equated to the area of a hexagon, $A_{\text{HEX}}=(3/2)3^{0.5}L_{\text{HEX}}^2$, to determine the length of each side vs. N as,

$$L_{\text{HEX}} = 2 \cdot 3^{-0.5} a N^{0.5}$$

which can then be used in the expression for R_g for a hexagon as,

$$R_{g,\text{HEX}} = 2^{-1}5^{0.5}3^{-0.5} L_{\text{HEX}} = 5^{0.5} 3^{-1} a N^{0.5}$$

Figure Captions

Figure S1. Hexagonally closed packed array of particles confined to (A) hexagon and (B) square morphologies with colors indicating the number of hexagonal close packed neighbors as $C_6 = 6$, blue; $C_6 = 5$, black; $C_6 = 4$, green; $C_6 = 3$, red; $C_6 = 2$, yellow.

References

Figure S1