Electronic Supplementary Information

Photoelectrochemical Lab-on-Paper Device Equipped with Porous Au-Paper Electrode and Fluidic Delay-Switch for Sensitive Detection of DNA Hybridization

Yanhu Wang, Lei Ge, Panpan Wang, Mei Yan, Shenguang Ge, Nianqiang Li, Jinghua Yu *, Jiadong Huang

Abbreviations

PEC	photoelectrochemical				
PS	paper supercapacitor				
μ-PAD	microfluidic paper-based analytical device				
µ-DNA-PECPD	microfluidic DNA-based PEC paper device				
DMM	digital multi-meter				
FDS	fluidic delay-switch				
PBS	phosphate buffer solution				
Au-PWE	Au-paper working electrode				
CL	chemiluminescence				
ECL	electrogenerated chemiluminescence				
ABEI	N-(aminobutyl)-N-(ethylisoluminol)				
AuNPs	gold nanoparticles				
PIP	<i>p</i> -iodophenol				
LED	light-emitting diode				
CdS NPs	cadmium sulfide nanoparticles				
PVA	Polyvinyl alcohol				
PDDA	poly(dimethyldiallylammonium chloride)				
MWCNTs	multi-walled carbon nanotubes				
PDDA-GR	PDDA-functionalized graphene				
BSA	bovine serum albumin				
NHS	N-Hydroxysuccinimide				
EDC	1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride				
PWE	paper working electrode				
SEM	scanning electron microscopy				
EIS	electrochemical impedance spectroscopy				
СВ	conduction-band				
VB	valence-band				
AC	areal capacitance				
HPLC	high performance liquid chromatography				
RSD	relative standard deviation				

Figure S1. Wax-printed µ-DNA-PECPDs on a paper sheet (A4) before baking.

Figure S2. Wax-printed µ-DNA-PECPDs on a paper sheet (A4) after baking.

Figure S3. μ -DNA-PECPDs on a paper sheet (A4) after screen-printing of carbon working electrodes.

Figure S4. μ-DNA-PECPDs on a paper sheet (A4) after screen-printing of carbon counter electrodes. (The reverse sides of Figure S3)

Figure S5. μ-DNA-PECPDs on a paper sheet (A4) after screen-printing of silver wire and silver pad.

Figure S6. μ-DNA-PECPDs on a paper sheet (A4) after screen-printing of silver wire. (The reverse sides of Figure S5)

Figure S7. µ-DNA-PECPDs on a paper sheet (A4) after drawing of graphite electrodes.

Figure S8. μ-DNA-PECPDs on a paper sheet (A4) after drawing of graphite electrodes. (The reverse sides of Figure S7)

Preparation of AuNPs attached MWCNTs

The as-received MWCNTs were first treated via sonication in 1:3 concentrated nitric-sulfuric acids at ca. 50 °C. Such a procedure could shorten the nanotubes, removed metallic and carbonaceous impurities, and generated carboxylate groups on the CNTs surface ¹. Then the shortened MWCNTs were functionalized with PDDA imitating previous literature ². Briefly, 5 mL shortened MWCNTs dispersion (1.0 mg/mL) was mixed with 10 mL PDDA aqueous solution (2.0 %) and sonicated for 30 min to give a homogeneous suspension. After centrifugation under 20,000 rpm, the complex was washed with water for at least three times. Then, the PDDA functionalized MWCNTs were dispersed in 10.0 mL of as-prepared colloidal AuNPs and stirred for 30 min. After centrifugation, light purple AuNPs/MWCNTs composites were obtained, which were further washed with water and redispersed in 5.0 mL of water.

Preparation of PDDA-GR

GR was functionalized with PDDA according to previous literature ². 5 mL GR dispersion (0.5 mg/mL) was mixed with 10 mL PDDA aqueous solution (1.0%) and sonicated for 30 min to give a homogeneous suspension. After centrifugation under 20,000 rpm, the complex was washed with water for at least three times and redispered in 5 mL water with mild sonication.

Figure S9. (A) The picture of the three circuit boards used in this work: (a) The conductive connector, (b) The hole for the addition of solution, (c) The insulating board. (B, C, D) The shape and size of the three circuit boards used in this work.

Figure S10. (A) Paper device and circuit for the demonstration of the function of fluidic switch; (B) Paper device and circuit for the determination of the delay time and delay reproducibility of the FDS; (1) the designed paper device, (2) the designed circuit, (3) circuit diagram: (a) paper initiation zone, (b) delay channel, (c) fluidic switch.

Figure S11. (A) SEM image of the resulted graphitic film electrode on paper; (B) Galvanostatic charge-discharge curves of this paper supercapacitor; (C) Durability test of this paper supercapacitor by measuring 100 charge-discharge cycles.

Figure S12. Self-discharge curve for the all-solid-state paper supercapacitor.

Device	Cost			Detection	
	Device	External equipment	Stability	Limit	Reference
Paper-based		Electrochemistry			9
electrochemical DNA	~<\$0.1	workstation	30 days at 4 °C	0.8 aM	Our previous
sensor		(~\$7000-9000)			work
Lateral flow					
colorimetric DNA	~<\$0.5		Not Mentioned	0.01 fM	10
biosensor					
Paper-based		El.			
fluorescent DNA	~<\$0.2	Fluorescence scanner (~\$50000-70000)	Not Mentioned	80 aM	11
biosensor					
Paper-based					
colorimetric DNA	~<\$0.2		27-33 °C	10 fM	12
biosensor					
Paper-based	~<\$0.1	Fluorescence Imager	Not Mentioned	100 pM	13
fluorescent DNA strip		(~\$30000-50000)			
Paper-based					
colorimetric mRNA	~<\$0.3		Not Mentioned	10 nM	14
biosensor					
Paper-based		Fluorescence Laser			
fluorescent DNA	~<\$0.1	Scanner	Not Mentioned	8 nM	15
detection		(~\$50000-80000)			
Paper-based		Luminescence			16
chemiluminescence	~<\$0.2	analyzer	6 weeks at 4 °C	0.85 aM	Our previous
DNA biosensor		(~\$5000-10000)			work
Donor bogod		Document			
Paper-based	~<\$0.2	scanner or cell phone	Not Mentioned	250 pg	17
bissenser		camera			
Diosensor		(~\$200-500)			
Lateral flow			At room		
colorimetric DNA	~<\$0.2		temperature for	0.16 pM	18
biosensor			days		
Paper-based	~<\$0.2	Digital multi mater	2 weeks at 4 °C	15 fM	This work
photoelectrochemical		Ligital multi-meter			
DNA biosensor		(~\$300-430)			

Table S1 Comparison of paper-based biosensors for DNA detection

Reference

1 M. Zhang, Y. Yan, K. Gong, L. Mao, Z. Guo and Y. Chen, *Langmuir*, 2004, **20**, 8781-8785.

2 R. Cui, H. Huang, Z. Yin, D. Gao and J.-J. Zhu, *Biosens. Bioelectron.*, 2008, 23, 1666-1673.