A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology

Che-Wei Huanga, Yu-Jie Huanga, Pei-Wen Yenb, Hann-Huei Tsaic, Hsin-Hao Liaoc, Ying-Zong Juangc, Shey-Shi Lua, and Chih-Ting Lina,b,d\star

aGraduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
bGraduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
cNational Chip Implementation Center, National Applied Research laboratories, Hsinchu 30075, Taiwan
dDepartment of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan. Fax: +886 2 2368 1679; Tel: +886 2 3366 9603; E-mail: timlin@cc.ee.ntu.edu.tw

Supplementary Figures

![Supplementary Figure S1](image)

Figure S1. A temperature calibration curve of the on-chip temperature sensor in the developed bio-SSoC. V_{AFE} represents the readout voltage of the temperature sensor after amplified by AFE. V_{REF} represents the referenced bias voltage on the chip. While temperature varies from -20°C to 120°C, the V_{REF} changes within 0.02 V. This also shows the temperature stability of the designed circuits.
Figure S2. An experimental measurement of the on-chip temperature sensor for 20 minutes. This result was measured during a HBV DNA detection was operated. In other words, the temperature varied within $1^\circ C$ in HBV DNA detection experiments.
Figure S3. The comparison of the bio-SSoC with and without post-etching process. (a) The experimental data of the bio-SSoC with post-etching process. (b) the experimental data of the bio-SsoC without post-etching process. It is clear that the LOD of post-etched SSoC (10fM) is lower than that of no-etched SSoC (10pM). In addition, the sensitivity of post-etched SSoC (0.23% per decay) is also better than that of no-etched SSoC (0.051% per decay).