Multiplexed immunoassay based on micromotors and microscale tags

D. Vilela, a,b† J. Orozco, a,† G. Cheng, a,c,† S. Sattayasamitsathit, a M. Galarnyk, a C. Kan, c J. Wang a,∗ and A. Escarpa b,∗

a Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, U.S.A.
b Department of Analytical Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
c Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China

Supporting Information

Videos

Video 1. Antibody-functionalized micromotors to detect ovalbumin, a stimulant of toxic proteins.

Video 2. Functional micromotors detecting multiple proteins.

Video 3. Antibody-functionalized micromotors picking up 3 and 4 µm wire-tagged target proteins. Unmodified micromotors or unmodified wires used as negative control.

Video 4. Multiple detection of proteins tagged with microobjects of different sizes and shapes.

Video 5. Multiplexed detection of 4 µm wire-tagged ovalbumin in the presence of IgG.

Video 6. Multiplexed detection of 2 µm wire-tagged IgG in the presence of ovalbumin.
S.I. Figure 1. An anti-IgG modified micromotor approaching (left), contacting (center), carrying (right) a 4 µm wire-tagged IgG protein (a) and bypassing a 2 µm unmodified wire (b) vs a 2 µm unmodified wire c), as negative controls respectively. Modified and unmodified wires are highlighted with a dotted circle and the captured wire-tagged protein with an arrow. Scale bar, 10 µm. Sketch of the modified micromotor, 4 µm wire-tagged IgG and 4 µm unmodified wire are shown on the right side of the figure. Motion conditions, 1X PBS solution pH 7.4, containing 3% H₂O₂ and 5% NaCh.