A multichannel neural probe with embedded microfluidic channels for simultaneous \textit{in vivo} neural recording and drug delivery

Hyunjoo J. Leea, Yoojin Sona,b, Jeongyeon Kimc, C. Justin Leec, Eui-Sung Yoona, and Il-Joo Choa,*

a Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
b School of Electrical Engineering, Korea University, Seoul, Korea.
c Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.

Fig. S1 Schematic of the pressure-driven injection system used to inject drugs \textit{in vivo}.
Fig. S2 Mouse *in vivo* experimental setup showing the stereotaxic frame, Neuralynx connector and board, ground screw, and packaged neural probe.
Fig. S3 Optical pictures of (a) probe with 16 microelectrode used in the first *in vivo* experiments and (b) probe with 8 microelectrode used in the second *in vivo* experiments.