Table S1. The identification results for the candidate of potential biomarkers

<table>
<thead>
<tr>
<th>Variable ID</th>
<th>Median retention (min)</th>
<th>m/z</th>
<th>VIP</th>
<th>Identification results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var_2</td>
<td>8.81</td>
<td>89</td>
<td>1.09</td>
<td>Lactate</td>
</tr>
<tr>
<td>Var_6</td>
<td>8.89</td>
<td>73.1</td>
<td>1.08</td>
<td>Lactate</td>
</tr>
<tr>
<td>Var_7</td>
<td>9.83</td>
<td>72.2</td>
<td>1.33</td>
<td>L-Alanine</td>
</tr>
<tr>
<td>Var_8</td>
<td>9.93</td>
<td>128.1</td>
<td>1.09</td>
<td>L-Alanine</td>
</tr>
<tr>
<td>Var_10</td>
<td>10.6</td>
<td>102.1</td>
<td>1.30</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_11</td>
<td>10.98</td>
<td>170.1</td>
<td>1.05</td>
<td>1,2-Butanediol</td>
</tr>
<tr>
<td>Var_12</td>
<td>11.1</td>
<td>112.2</td>
<td>1.05</td>
<td>Oxalate</td>
</tr>
<tr>
<td>Var_13</td>
<td>11.13</td>
<td>202.2</td>
<td>1.07</td>
<td>Oxalate</td>
</tr>
<tr>
<td>Var_14</td>
<td>11.18</td>
<td>132.2</td>
<td>1.08</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_15</td>
<td>11.23</td>
<td>131.1</td>
<td>1.06</td>
<td>2-oxy-Butanoic acid</td>
</tr>
<tr>
<td>Var_27</td>
<td>11.98</td>
<td>233.1</td>
<td>1.11</td>
<td>3-Hydroxy-butyrate</td>
</tr>
<tr>
<td>Var_30</td>
<td>12.77</td>
<td>68.1</td>
<td>1.04</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_31</td>
<td>12.78</td>
<td>188.1</td>
<td>1.04</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_32</td>
<td>12.81</td>
<td>86.1</td>
<td>1.05</td>
<td>Ethanethioic acid, S-(3-methylbutyl) ester</td>
</tr>
<tr>
<td>Var_33</td>
<td>12.95</td>
<td>241.1</td>
<td>1.03</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_39</td>
<td>14.04</td>
<td>148.1</td>
<td>1.07</td>
<td>L-Valine</td>
</tr>
<tr>
<td>Var_47</td>
<td>15.61</td>
<td>174.1</td>
<td>1.05</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_48</td>
<td>15.62</td>
<td>131.1</td>
<td>1.05</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_49</td>
<td>15.63</td>
<td>79.1</td>
<td>1.21</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_50</td>
<td>15.64</td>
<td>159.1</td>
<td>1.02</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_51</td>
<td>15.68</td>
<td>87.9</td>
<td>1.26</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_52</td>
<td>15.69</td>
<td>69.1</td>
<td>1.22</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_53</td>
<td>15.71</td>
<td>259.1</td>
<td>1.04</td>
<td>Urea</td>
</tr>
<tr>
<td>Var_58</td>
<td>15.8</td>
<td>87.1</td>
<td>1.03</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_57</td>
<td>15.8</td>
<td>100.1</td>
<td>1.03</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_59</td>
<td>15.81</td>
<td>60.1</td>
<td>1.13</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_60</td>
<td>15.84</td>
<td>61.1</td>
<td>1.22</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_61</td>
<td>15.85</td>
<td>84.1</td>
<td>1.04</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var</td>
<td>m/z</td>
<td>Intensity</td>
<td>Retention</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Var_67</td>
<td>15.95</td>
<td>205.1</td>
<td>1.24</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_69</td>
<td>15.97</td>
<td>177.1</td>
<td>1.25</td>
<td>Glycerol</td>
</tr>
<tr>
<td>Var_70</td>
<td>15.98</td>
<td>103.1</td>
<td>1.42</td>
<td>Glycerol</td>
</tr>
<tr>
<td>Var_71</td>
<td>15.98</td>
<td>133.1</td>
<td>1.36</td>
<td>Phosphate</td>
</tr>
<tr>
<td>Var_72</td>
<td>16.01</td>
<td>207.1</td>
<td>1.29</td>
<td>Phosphate</td>
</tr>
<tr>
<td>Var_73</td>
<td>16.02</td>
<td>299.1</td>
<td>1.18</td>
<td>Phosphate</td>
</tr>
<tr>
<td>Var_74</td>
<td>16.51</td>
<td>184.1</td>
<td>1.13</td>
<td>L-threonine</td>
</tr>
<tr>
<td>Var_81</td>
<td>16.61</td>
<td>161.1</td>
<td>1.14</td>
<td>Glycine</td>
</tr>
<tr>
<td>Var_85</td>
<td>16.97</td>
<td>247.1</td>
<td>1.47</td>
<td>Succinate</td>
</tr>
<tr>
<td>Var_86</td>
<td>17.29</td>
<td>71.1</td>
<td>1.23</td>
<td>L-glyceric acid</td>
</tr>
<tr>
<td>Var_88</td>
<td>17.32</td>
<td>110.1</td>
<td>1.31</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_87</td>
<td>17.32</td>
<td>159.1</td>
<td>1.21</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_89</td>
<td>17.4</td>
<td>255.2</td>
<td>1.11</td>
<td>4-Deoxyerythronic acid</td>
</tr>
<tr>
<td>Var_90</td>
<td>17.42</td>
<td>241.1</td>
<td>1.1</td>
<td>4-Deoxyerythronic acid</td>
</tr>
<tr>
<td>Var_91</td>
<td>17.73</td>
<td>245.1</td>
<td>1.03</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_92</td>
<td>17.78</td>
<td>188.2</td>
<td>1.03</td>
<td>L-Serine</td>
</tr>
<tr>
<td>Var_95</td>
<td>18.18</td>
<td>184.1</td>
<td>1.23</td>
<td>L-threonine</td>
</tr>
<tr>
<td>Var_98</td>
<td>18.79</td>
<td>160.1</td>
<td>1.09</td>
<td>2,4-Dihydroxy-butanoic acid</td>
</tr>
<tr>
<td>Var_104</td>
<td>19.01</td>
<td>228.1</td>
<td>1.2</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_106</td>
<td>19.15</td>
<td>104.1</td>
<td>1.15</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_109</td>
<td>19.88</td>
<td>158.2</td>
<td>1.18</td>
<td>Aminomalonic acid</td>
</tr>
<tr>
<td>Var_110</td>
<td>19.91</td>
<td>147.1</td>
<td>1.11</td>
<td>Malate</td>
</tr>
<tr>
<td>Var_114</td>
<td>20.25</td>
<td>98.1</td>
<td>1.01</td>
<td>2,3,4-trihydroxy-butanal</td>
</tr>
<tr>
<td>Var_117</td>
<td>20.54</td>
<td>156.1</td>
<td>1.04</td>
<td>5-Oxoproline</td>
</tr>
<tr>
<td>Var_116</td>
<td>20.54</td>
<td>157.1</td>
<td>1.04</td>
<td>5-Oxoproline</td>
</tr>
<tr>
<td>Var_121</td>
<td>20.72</td>
<td>156.1</td>
<td>1.07</td>
<td>2,3,4-Trihydroxybutyric acid</td>
</tr>
<tr>
<td>Var_122</td>
<td>20.79</td>
<td>174.1</td>
<td>1.14</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_123</td>
<td>21.09</td>
<td>120.1</td>
<td>1.08</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Var_134</td>
<td>21.3</td>
<td>218.1</td>
<td>1.12</td>
<td>Proline</td>
</tr>
<tr>
<td>Var_135</td>
<td>22.48</td>
<td>263.2</td>
<td>1.3</td>
<td>Ribose</td>
</tr>
<tr>
<td>Var_136</td>
<td>22.59</td>
<td>252.1</td>
<td>1.1</td>
<td>Ribose</td>
</tr>
<tr>
<td>Var_143</td>
<td>23.4</td>
<td>437.2</td>
<td>1.32</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_144</td>
<td>24.3</td>
<td>257.1</td>
<td>1.15</td>
<td>Citrate</td>
</tr>
<tr>
<td>Var_146</td>
<td>24.34</td>
<td>215.1</td>
<td>1.14</td>
<td>Citrate</td>
</tr>
<tr>
<td>Var_149</td>
<td>24.36</td>
<td>67.1</td>
<td>1.28</td>
<td>Citrate</td>
</tr>
<tr>
<td>Var_154</td>
<td>24.83</td>
<td>218.2</td>
<td>1.12</td>
<td>Rhamnose</td>
</tr>
<tr>
<td>Var_155</td>
<td>24.84</td>
<td>217.1</td>
<td>1.07</td>
<td>Rhamnose</td>
</tr>
<tr>
<td>Var_156</td>
<td>24.85</td>
<td>257.2</td>
<td>1.06</td>
<td>Rhamnose</td>
</tr>
<tr>
<td>Var_157</td>
<td>24.89</td>
<td>157.1</td>
<td>1.03</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_158</td>
<td>24.91</td>
<td>244.2</td>
<td>1.1</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_159</td>
<td>24.93</td>
<td>163.1</td>
<td>1.14</td>
<td>Unknown</td>
</tr>
<tr>
<td>Var_160</td>
<td>24.94</td>
<td>174.2</td>
<td>1.21</td>
<td>Unknown</td>
</tr>
<tr>
<td>Variable</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Var_161</td>
<td>24.96</td>
<td>247.2</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Var_162</td>
<td>24.97</td>
<td>156.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Var_163</td>
<td>25</td>
<td>200.2</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Var_166</td>
<td>25.56</td>
<td>366.2</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Var_167</td>
<td>25.57</td>
<td>73.2</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>Var_171</td>
<td>25.61</td>
<td>233.2</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Var_179</td>
<td>26.06</td>
<td>318.2</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Var_185</td>
<td>27.12</td>
<td>217.1</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Var_187</td>
<td>28.28</td>
<td>205.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Var_191</td>
<td>28.87</td>
<td>83.2</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Var_192</td>
<td>29.05</td>
<td>267.2</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Var_193</td>
<td>29.06</td>
<td>268.2</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Var_194</td>
<td>29.51</td>
<td>305.2</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Var_201</td>
<td>31.69</td>
<td>150.2</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Var_202</td>
<td>31.69</td>
<td>338.3</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Var_203</td>
<td>31.7</td>
<td>122.2</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Var_204</td>
<td>31.71</td>
<td>93.1</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Var_205</td>
<td>31.72</td>
<td>75.1</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>Var_207</td>
<td>31.73</td>
<td>129.1</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Var_206</td>
<td>31.73</td>
<td>96.2</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Var_208</td>
<td>31.75</td>
<td>145.1</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Var_210</td>
<td>31.77</td>
<td>84.1</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Var_214</td>
<td>32.15</td>
<td>341.3</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Var_217</td>
<td>33.66</td>
<td>80.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Var_218</td>
<td>33.67</td>
<td>67.1</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>Var_220</td>
<td>34.05</td>
<td>342.4</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Var_221</td>
<td>35.09</td>
<td>169.1</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Var_222</td>
<td>35.1</td>
<td>361.2</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>Var_223</td>
<td>35.38</td>
<td>167.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Var_224</td>
<td>35.57</td>
<td>108.2</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Var_227</td>
<td>36.14</td>
<td>362.2</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>Var_228</td>
<td>36.15</td>
<td>243.2</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Var_229</td>
<td>36.15</td>
<td>169.1</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Var_230</td>
<td>36.16</td>
<td>129.1</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Var_231</td>
<td>37.4</td>
<td>399.1</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Var_232</td>
<td>40.5</td>
<td>502.1</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Var_244</td>
<td>40.62</td>
<td>71.2</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>Var_248</td>
<td>41.79</td>
<td>343.4</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Var_252</td>
<td>42.94</td>
<td>357.4</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>

Table S2. The relative levels and t-test results of the potential biomarkers in rat sera of C-7, C-14, MI-7 and MI-14 groups.

(3α,24β)-ergost-5-en-3-ol
β-Sitosterol
<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Metabolites</th>
<th>t<sub>R</sub> (min)</th>
<th>C-7 (n=6)</th>
<th>MI-7 (n=6)</th>
<th>C-14 (n=11)</th>
<th>MI-14 (n=10)</th>
<th>P value for t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.483±0.2596</td>
<td>0.0104±0.0037</td>
<td>0.0073±0.0047</td>
<td>0.0006±0.0047</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lactate</td>
<td>8.92</td>
<td>0.893±0.05481</td>
<td>2.7188±0.5626</td>
<td>3.1448±0.0895</td>
<td>4.4874±0.7396</td>
<td>0.0001 ± 0.0001</td>
</tr>
<tr>
<td>2</td>
<td>Urea</td>
<td>15.74</td>
<td>1.8223±0.1.2179</td>
<td>3.0323±0.9249</td>
<td>1.3401±0.3974</td>
<td>2.4959±0.8424</td>
<td>0.04 ± 0.0009</td>
</tr>
<tr>
<td>3</td>
<td>Phosphate</td>
<td>16.03</td>
<td>0.7812±0.1804</td>
<td>2.0260±1.3634</td>
<td>0.4436±0.0998</td>
<td>0.8301±0.0066</td>
<td>0.04 ± 0.001</td>
</tr>
<tr>
<td>4</td>
<td>L-Threonine</td>
<td>16.44</td>
<td>0.1151±0.0462</td>
<td>0.1851±0.0322</td>
<td>0.1081±0.0168</td>
<td>0.1584±0.0365</td>
<td>0.007 ± 0.0009</td>
</tr>
<tr>
<td>5</td>
<td>Glycine</td>
<td>16.65</td>
<td>0.0311±0.0127</td>
<td>0.0818±0.0380</td>
<td>0.0472±0.0316</td>
<td>0.0917±0.0666</td>
<td>0.01 ± 0.04</td>
</tr>
<tr>
<td>6</td>
<td>Succinate</td>
<td>16.96</td>
<td>0.0087±0.0018</td>
<td>0.0622±0.0099</td>
<td>0.0077±0.0013</td>
<td>0.0139±0.0049</td>
<td>2×10<sup>−5</sup> ± 0.002</td>
</tr>
<tr>
<td>7</td>
<td>L-glyceral acid</td>
<td>17.25</td>
<td>0.0064±0.0023</td>
<td>0.0159±0.0061</td>
<td>0.0110±0.0021</td>
<td>0.0181±0.0035</td>
<td>0.005 ± 4×10<sup>−5</sup></td>
</tr>
<tr>
<td>8</td>
<td>4-Deoxyerythrose</td>
<td>17.49</td>
<td>0.0091±0.0014</td>
<td>0.0107±0.0032</td>
<td>0.0079±0.0010</td>
<td>0.0126±0.0033</td>
<td>0.1 ± 0.0006</td>
</tr>
<tr>
<td>9</td>
<td>2,4-Dihydroxy-</td>
<td></td>
<td>0.0033±0.0007</td>
<td>0.0047±0.0012</td>
<td>0.0042±0.0008</td>
<td>0.0066±0.0013</td>
<td>0.02 ± 7×10<sup>−5</sup></td>
</tr>
<tr>
<td></td>
<td>butanoic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Aminomalonic acid</td>
<td>19.74</td>
<td>0.0150±0.0078</td>
<td>0.0185±0.0065</td>
<td>0.0112±0.0037</td>
<td>0.0158±0.0054</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>11</td>
<td>Malate</td>
<td>20.04</td>
<td>0.0151±0.0042</td>
<td>0.0276±0.0056</td>
<td>0.0152±0.0018</td>
<td>0.0198±0.0069</td>
<td>0.0008 ± 0.03</td>
</tr>
<tr>
<td>12</td>
<td>2,3,4-Trihydroxy-</td>
<td>20.28</td>
<td>0.0156±0.0021</td>
<td>0.0222±0.0054</td>
<td>0.0164±0.0038</td>
<td>0.0292±0.0035</td>
<td>0.02 ± 8×10<sup>−8</sup></td>
</tr>
<tr>
<td></td>
<td>y-butanal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5-Oxoproline</td>
<td>20.54</td>
<td>0.2623±0.1366</td>
<td>0.5353±0.1246</td>
<td>0.2715±0.0620</td>
<td>0.3719±0.0597</td>
<td>0.002 ± 0.0006</td>
</tr>
<tr>
<td>14</td>
<td>Phenylalanine</td>
<td>21.02</td>
<td>0.0081±0.0023</td>
<td>0.0121±0.0038</td>
<td>0.0145±0.0039</td>
<td>0.0308±0.0096</td>
<td>0.03 ± 0.0002</td>
</tr>
<tr>
<td>15</td>
<td>L-Proline</td>
<td>21.38</td>
<td>0.0183±0.0095</td>
<td>0.0271±0.0093</td>
<td>0.0237±0.0175</td>
<td>0.0483±0.0177</td>
<td>0.07 ± 0.002</td>
</tr>
<tr>
<td>16</td>
<td>Glycerol</td>
<td>23.55</td>
<td>0.0095±0.0039</td>
<td>0.0186±0.0042</td>
<td>0.0145±0.0045</td>
<td>0.0170±0.0078</td>
<td>0.002 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>3-phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D-Glucitol</td>
<td>26.20</td>
<td>0.0078±0.0008</td>
<td>0.0161±0.0009</td>
<td>0.0217±0.0036</td>
<td>0.0331±0.0063</td>
<td>8×10<sup>−9</sup> ± 0.0001</td>
</tr>
<tr>
<td>18</td>
<td>Palmitate</td>
<td>28.41</td>
<td>0.0161±0.0066</td>
<td>0.0186±0.0057</td>
<td>0.0138±0.0036</td>
<td>0.0218±0.0105</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>19</td>
<td>Octadecanoate</td>
<td>32.15</td>
<td>0.0471±0.0152</td>
<td>0.0875±0.0098</td>
<td>0.0355±0.0079</td>
<td>0.0595±0.0145</td>
<td>0.0002 ± 0.0002</td>
</tr>
<tr>
<td>20</td>
<td>1-hexadecanoyl-</td>
<td>35.81</td>
<td>0.0167±0.0018</td>
<td>0.0215±0.0017</td>
<td>0.0024±0.0054</td>
<td>0.0421±0.0084</td>
<td>0.0005 ± 2×10<sup>−5</sup></td>
</tr>
<tr>
<td></td>
<td>-glycerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1-Octadecanoyl</td>
<td>37.40</td>
<td>0.0172±0.0035</td>
<td>0.0219±0.0031</td>
<td>0.0179±0.0040</td>
<td>0.0288±0.0068</td>
<td>0.02 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>-glycerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Vitamin E</td>
<td>40.50</td>
<td>0.0165±0.0060</td>
<td>0.0244±0.0070</td>
<td>0.0148±0.0048</td>
<td>0.0274±0.0059</td>
<td>0.03 ± 2×10<sup>−5</sup></td>
</tr>
<tr>
<td>23</td>
<td>Cholesterol</td>
<td>40.66</td>
<td>0.5191±0.1145</td>
<td>0.6741±0.1448</td>
<td>0.3785±0.0891</td>
<td>0.5912±0.0829</td>
<td>0.03 ± 9×10<sup>−6</sup></td>
</tr>
<tr>
<td>24</td>
<td>ß-Sitosterol</td>
<td>42.98</td>
<td>0.0122±0.0033</td>
<td>0.0365±0.0152</td>
<td>0.0171±0.0052</td>
<td>0.0333±0.0069</td>
<td>0.005 ± 7×10<sup>−6</sup></td>
</tr>
</tbody>
</table>

* The value is demonstrated as mean±SD. C-7, control group 1 for 7 days (the ligation suture was placed in the heart, but without ligation, followed by sampling in the 7th day); C-14, control group 2 for 14 days; MI-7, myocardial infarction group 1 ligated for 7 days; MI-14, myocardial infarction group 2 ligated for 14 days. “=” means that the metabolite levels have significant changes (p<0.05) between C-7 and C-14 groups, so it has no significance to compare their levels between MI-7 and MI-14 groups. “↑” and “↑↑” demonstrate that the metabolite levels have significant elevation (p<0.05) in MI-7 groups and MI-14 groups, comparing to C-7 and C-14, respectively.
Figure S1. Histological change in myocardium following LAD ligation (200×). Myocardial tissues from rats in C-7 group (a), MI-7 group (b), MI-14 group (c), and MI-7+ROE group (d) were processed and stained with HE. Compared to the normal heart tissue, inflammatory cell infiltration and contraction band necrosis (not shown) were the major features of the operated animals following LAD ligation.