Zinc-induced dimerization of the amyloid-β metal-binding domain 1-16 is mediated by residues 11–14

Sergey A. Kozin, Yuri V. Mezentsev, Alexandra A. Kulikova, Maria I. Indeykina, Andrey V. Golovin, Alexis S. Ivanov, Philipp O. Tsvetkov and Alexander A. Makarov

Materials

All synthetic peptides (purity > 98% checked by RP-HPLC) used throughout the study were purchased from Biotechnological Center of Organic Chemistry (San Diego, CA, USA). The amino acid sequence of each peptide was confirmed on an ultra high resolution Fourier transform ion cyclotron resonance mass-spectrometer 7T Apex Qe Bruker Daltonics, Bellerica, MA, USA) by using a de-novo sequencing approach based on a CID fragmentation technique. The lyophilized peptides were dissolved in the appropriate buffer before each experiment.

The final peptide concentrations were determined by UV absorption spectroscopy using the extinction coefficient of 1450 M⁻¹ cm⁻¹ at 276 nm (from Tyr 10 of Aβ) or gravimetrically.

Research grade sensor chips CM5 carrying the hydrophilic carboxymethylated dextran matrix, HBS buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), N-hydroxysuccinimide (NHS), 2-(2-pyridinyldithio)-ethaneamine (PDEA), and cysteine were purchased from BIAcore (GE, USA). All other chemicals and solvents were of HPLC grade or better and were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Surface Plasmon Resonance (SPR) Biosensing

Attachment of the synthetic peptide Acetyl-DAEFRHDSGYEVHHQK-Amide (Aβ1-16-G2-C), which will serve as the ligand in further assays, to the CM5 chip surface were capped with 50 mM cysteine solution in 0.1 M sodium acetate buffer. Unreacted disulfide groups on the chip surface was exposed to the running buffer without the immobilized ligand. The chip surface was regenerated by injecting the regeneration buffer (20 mM HEPES, pH 6.8) in the absence or presence of zinc (100 µM) or copper (100 µM) ions. Each analyte was diluted to different concentrations (Table 1) and injected in multichannel mode (volume 25 µL and rate 5 µL/min) during 300 s. Then, the chip surface was exposed to the running buffer without analyte for 300 s. The chip surface was regenerated by injecting the regeneration buffer (20 µL). The control line data (the signal from the channel with carboxymethyl dextran without the immobilized ligand) was subtracted from the raw data, obtained from the flow cell with the immobilized ligand. The kinetic rate constants were calculated from the sensorgrams by globally fitting the response curves obtained at various analyte concentrations using the Langmuir model (1:1 binding) in the BIAevaluation 4.1 program. The association (k_on) and the dissociation (k_off) rate constants were fitted simultaneously:

\[
\frac{dR}{dt} = k_{\text{on}} [C] (R_{\text{max}} - R) - k_{\text{off}} R,
\]

where R stands for the biosensor response of the formed complex, C is the concentration of the analyte, and R_{max} is the maximal theoretical value of the binding response for a given analyte.

Table S1. Analyte concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analyte concentrations, µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl-DAEFRHDSGYEVHHQK-Amide</td>
<td>2, 10, 15, 20</td>
</tr>
<tr>
<td>Acetyl-HDSGYEVHH- Amide</td>
<td>100, 120, 140, 150</td>
</tr>
<tr>
<td>Acetyl -EVHH- Amide</td>
<td>50, 100, 150, 200, 250</td>
</tr>
<tr>
<td>Acetyl -DSGYEVHH- Amide</td>
<td>100, 150, 200, 250</td>
</tr>
<tr>
<td>Acetyl -HDSGYEVH- Amide</td>
<td>10, 50, 100, 300</td>
</tr>
<tr>
<td>Acetyl -DAEFR- Amide</td>
<td>5, 10, 50, 100, 300</td>
</tr>
</tbody>
</table>

* Interaction of this analyte with the immobilized ligand was not observed.
Using the obtained data association (\(K_a\)) and dissociation (\(K_d\)) constants were calculated from the ratios of the association (\(k_{on}\)) and dissociation (\(k_{off}\)) rate constants:
\[
K_a = \frac{k_{on}}{k_{off}}, \quad K_d = \frac{k_{off}}{k_{on}}.
\]

5 Mass-spectrometry

All of the experiments were carried out on a 7T Thermo Finnigan LTQ FT Ultra instrument. The following settings of the mass-spectrometer were used:

- Spray voltage 3.2-3.4 kV,
- Capillary temperature 120°C, low temperatures were used to prevent in source dissociation of the zinc-ion complexes,
- Flow rate 1 μL/min,
- AGC parameters (the amount of ions gathered): full MS 1×10^6, narrow SIM 5×10^5, wide SIM 5×10^5,
- The rest of the parameters were semi-automatically tuned for the following masses: 666, 687, 998 and 1030, which correspond to the triply and doubly charged molecular ions of the Aβ1-16 peptide and its zinc ion adducts.

The samples for mass-spectrometric analysis were prepared from stock solutions by diluting them in MeOH and water to their final ratio of 1:1 and addition of 2 mM Zn(CH$_3$COO)$_2$ in MeOH, pH 6.3 in the desired amount. The stock solutions were prepared from lyophilized peptides in HPLC grade water. The concentrations of the stock solutions were determined gravimetrically. The final peptide concentration in the samples used for analysis was 1-200 μM. And the final zinc concentration was 120-2000 μM.

Isothermal Titration Calorimetry

The thermodynamic parameters of zinc binding to EVRH peptide were measured using an iTC200 instrument (MicroCal, Northampton, MA, USA) as described previously.

Experiments were carried out at 25°C in 50 mM Tris buffer, pH 7.3. 2-μl aliquots of ZnCl$_2$ solution were injected into the 0.2 mL cell containing the peptide solution to get a complete binding isotherm. Peptide concentration in the cell ranged from 1 to 2 mM and ZnCl$_2$ concentration in the syringe ranged from 5 to 15 mM. The heat of dilution was measured by injecting the ligand into the buffer solution or by additional injections of the ligand after saturation; the values obtained were subtracted from the heat of reaction to obtain the effective heat of binding. The resulting titration curves were fitted using MicroCal Origin software. The affinity constants (\(K_a\)), binding stoichiometry (N) and binding enthalpy (\(\Delta H\)) were determined by a non-linear regression fitting procedure. Isothermal titration calorimetry measurements have been repeated at least three times at different peptide concentrations and yielded similar thermodynamic parameters.

Modeling

The earlier described model of the structure of the peptide complex Aβ11-16-Zn$^{2+}$ was amplified to a complete dimer by rotating it around the axis, which connects the zinc atom to the OD1 Glu. For this structure two models were constructed in the amber03 force field. The first model contained the parameters corresponding to the geometry of a complex in which the zinc atom is coordinated by the Glu11 and His14 residues of both peptides. This model is further referred as M1. The second model corresponds to the geometry for zinc coordination by residues His13 and His14 of both peptides, and is further referred as M2. The GROMACS 4.0 software package was used for MD simulation and analysis of the trajectories. The simulations in explicit solvent were carried out at 300 K under the control of a velocity rescaling thermostat at constant pressure and using the PME (particle mesh Ewald) method to take into account the electrostatic interactions. The dimers were put into the center of a triclinic cell with the distance to the borders of 20 Å. The cell was filled by TIP4P water and the negative charge of the system was compensated by sodium ions. The concentration of monovalent ions was set to 0.15 M. The trajectories were selected and their geometry was optimized using the QM/MM method as described in the work by Biswas and Gogonea. The QM system was described in terms of PW-DFT with a spin polarized formalism and PW91 functional. The interactions between valence electrons and the ionic cores are described by ultrasoft VDB pseudopotential. Side-chain atoms from Glu11, His14 or His13, His14 pairs were...
included in the QM system. Van der Waals interactions between heterocyclic bases, which are poorly described by default DFT, were corrected with the Grimme analytical potential.12 QM/MM geometry optimization was performed with the GROMACS/CPMD package.3 Since we applied ultrasoft pseudopotentials, the basis set for the valence electrons consists of plane waves expanded up to a cutoff of 30 Ry. The QM subcell had a cubic shape with 40 Ry side length, in result we have got about 90,000 plane waves for wavefunction.

In order to calculate the energy gain from zinc binding the following equation was used: $\Delta E = \langle E_{M1} \rangle - \langle E_{M1 \text{ w/o Zn}} \rangle - E_{Zn}$, where E_{x} corresponds to the total energy of the corresponding quantum subsystem. To calculate the energy of the quantum system of the chelators in the absence of zinc, the geometry of the dimer was also optimized without the cation. The energy values were averaged over the last 15 steps of the geometry optimization procedure.

<table>
<thead>
<tr>
<th>System</th>
<th>$\langle E \rangle$, a.u.</th>
<th>ΔE, a.u.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn$^{2+}$</td>
<td>-63.66</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>-234.45</td>
<td>-1.11</td>
</tr>
<tr>
<td>M1 w/o Zn$^{2+}$</td>
<td>-169.82</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>-222.75</td>
<td>-0.69</td>
</tr>
<tr>
<td>M2 w/o Zn$^{2+}$</td>
<td>-158.06</td>
<td></td>
</tr>
</tbody>
</table>

* To calculate the energy gain from zinc binding the following equation was used: $\Delta E = \langle E_{M1} \rangle - \langle E_{M1 \text{ w/o Zn}} \rangle - E_{Zn}$

Notes and references
a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991 Moscow, Russia; E-mail: aamakarov@eimb.ru, kozinsa@gmail.com
b Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaya street 10, 119832 Moscow, Russia
c Emanuel Institute of Biochemical Physics, Kosygina street 4, 119334 Moscow, Russia
d Bioengineering and Bioinformatics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia