Supplemented information

Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS

Yingying Wu, Qianjin Kang, Yuema Shen, Wenjin Su, Linquan Bai

Plasmid construction for nat gene inactivation

To construct the large DNA fragments deletion, a 10-kb KpnI fragment of the fosmid 14F11 was ligated to the KpnI-digested pJTU1289. The resultant plasmid pJTU3230 was used for targeted replacement of a 7.2-kb DNA fragment internal to the 10-kb KpnI fragment of 14F11 with the 1.40-kb aac(3)IV to generate pJTU3231. To inactivate nat1, an 8.2-kb BamHI/EcoRI fragment carrying nat1 was ligated to the KpnI/BamHI-digested pJTU1289 to give pJTU3241. This plasmid was then used for targeted replacement of a 1.34-kb DNA fragment internal to nat1 with the 1.40-kb aac(3)IV to generate pJTU3245. For nat2 inactivation, a 9.7-kb AgeI/EcoRI DNA fragment of fosmid 14F11 was ligated to the XmaI/EcoRI-digested pIJ2925 to construct pJTU3248. The 9.7-kb fragment with nat2 was then cleaved by EcoRI and XbaI from the pJTU3248 and ligated to the EcoRI/XbaI-digested pJTU1289 to construct pJTU3249. This plasmid was then used for targeted replacement of a 0.98-kb DNA fragment internal to nat2 with the 1.40-kb aac(3)IV to generate pJTU3250.
Figure legends

Fig. S1 Alignments of AHBA synthases. RifK, AHBA synthase of rifamycin biosynthesis; NapF, AHBA synthase of naphthomycin C biosynthesis from *Streptomyces collinus* Tü 1892; RubK, AHBA synthase of rubradirin biosynthesis; Asm43, AHBA synthase of ansamitocin biosynthesis; GelK, AHBA synthase of geldanamycin biosynthesis; AsnF, AHBA synthase of ansatrienin biosynthesis.

Fig. S2 Deletion of a large fragment in *Streptomyces CS*. A, schematic representation for the deletion of large fragment. B, validation of the large fragment deletion mutant WYY1 by HPLC.

Fig. S3 AHBA biosynthetic gene sets from ansamycin biosynthetic gene clusters (A) and phylogenetic tree of AHBA synthases (B)

Fig. S4 Alignment of Nat1 and Asm12. Nat1, halogenase for naphthomycin biosynthesis; Asm12, halogenase for ansamitocin biosynthesis.

Fig. S5 Alignment (A) and phylogenetic tree (B) of oxidoreductases. RubP1, oxidoreductase for rubradirin biosynthesis; Orf19, oxidoreductase for rifamycin biosynthesis; Nat2, oxidoreductase for naphthomycin biosynthesis from CS; GdmM, oxidoreductase for geldanamycin; McbM, oxidoreductase for
macbecin biosynthesis.

Fig. S6 ESI-MS analysis of ansamitocins and naththomycins

Table S1. Strains and plasmids used in this work

<table>
<thead>
<tr>
<th>Strains or Plasmids</th>
<th>Properties or products</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces sp. CS</td>
<td>wild-type, naphthomycins</td>
<td>1</td>
</tr>
<tr>
<td>WYY1</td>
<td>F^mcrA Δ(mrr-hsdRMS-mcrBC) Φ80d, large fragment deletion mutant,</td>
<td>This study</td>
</tr>
<tr>
<td>DH10B</td>
<td>lacZΔM15ΔlacX74deoR recA1endA1ara, Δ139D(ara,leu)7697galUgaK'rpsL nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>ET12567 (pUZ8002)</td>
<td>dam dcm hsdS pUZ8002</td>
<td>2</td>
</tr>
<tr>
<td>Actinosynnema pretiosum</td>
<td>Wild-type, ansamitocins</td>
<td>3</td>
</tr>
<tr>
<td>HGF054</td>
<td>asm12 with Mscl site inserted, 19-DCI-ansamitocins</td>
<td>4</td>
</tr>
<tr>
<td>BL21(DE3)plysE</td>
<td>F^ompT hsdS (r_b' i_b') gal dcm (DE3) plysE (Cm^R)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>WYY2</td>
<td>nat1 mutant, Apr(R)</td>
<td>This study</td>
</tr>
<tr>
<td>WYY3</td>
<td>nat2 mutant, Apr(R)</td>
<td>This study</td>
</tr>
<tr>
<td>WYY4</td>
<td>WYY2 complemented with pJTU824, Thio(R)</td>
<td>This study</td>
</tr>
<tr>
<td>WYY5</td>
<td>WYY2 complemented with asm12, Thio(R)</td>
<td>This study</td>
</tr>
<tr>
<td>WYY6</td>
<td>WYY2 complemented with nat1, Thio(R)</td>
<td>This study</td>
</tr>
<tr>
<td>KW3</td>
<td>HGF054 complemented with pJTU139, Apr(R)</td>
<td>This study</td>
</tr>
<tr>
<td>KW4</td>
<td>HGF054 complemented with asm12, Apr(R)</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids/fosmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>pBluescript KS(+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla, lacZ, orif1</td>
<td>Novagen</td>
<td></td>
</tr>
<tr>
<td>14F11, 4C11, 23G9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosmids containing naphthomycin biosynthetic gene cluster</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU1289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ori(pJ101), tsr, bla, lacZ</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>pJTU3231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla, aac(3)IV, cloning of a KpnI fragment from 14F11 to pJTU1289, contains a linked 1.25-kb left arm, 1.4-kb aac(3)IV, 1.25-kb right arm for large fragment inactivation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pRSETb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bla, T7</td>
<td>Invitrogen</td>
<td></td>
</tr>
<tr>
<td>pIJ2925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla, lacZa, ori</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pIB139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSET152 derived vector with PermE* promoter</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pJTU824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla, tsr, rep^{puc}, att^{ABC31}, oriT, PermE*</td>
<td>L Bai, unpublished</td>
<td></td>
</tr>
<tr>
<td>bla, aac(3)IV, cloning of a BamHI/EcoRI fragment from 14F11 to pJTU1289, contains a linked 3.24-kb left arm, 1.4-kb aac(3)IV, and 3.72-kb right arm for nat1 inactivation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pIB139 cloned with asm12 for complementation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pIB139 cloned with nat1 for complementation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJTU824 cloned with asm12 for complementation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJTU824 cloned with nat1 for complementation</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJTU3248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJTU3249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJTU3250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla, aac(3)IV, cloning of a EcoRI/Agel fragment</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pJTU3251</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems

This journal is © The Royal Society of Chemistry 2011
from 14F11 to pJTU1289, contains a linked 3.94-kb left arm, 1.4-kb \textit{aac(3)IV}, and 3.98-kb right arm for \textit{nat2} inactivation

<table>
<thead>
<tr>
<th>pJTU5156</th>
<th>pJTU824 cloned with \textit{nat2} for complementation</th>
<th>This study</th>
</tr>
</thead>
<tbody>
<tr>
<td>pJTU5157</td>
<td>pJTU824 cloned with \textit{rif-orf19} for complementation</td>
<td>This study</td>
</tr>
<tr>
<td>pJTU5158</td>
<td>pIB139 cloned with \textit{nat2} for complementation</td>
<td>This study</td>
</tr>
</tbody>
</table>
Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2011

Fig. S1
Fig. S2

(A) Diagram showing the genetic modification in the wild-type strain to create WYY1. The genetic elements and their orientations are depicted, with the introduction of a "bla" cassette via double-crossover recombination.

(B) Chromatograms comparing WT and WYY1 strains. The chromatograms show the presence of naphthomycin E and naphthomycin A in WYY1, indicating a successful genetic modification.
A Naphthomycins from S. CS

Rifamycin

Naphthomycin C from S. collinus

Rubradirin

Ansamitocin

Geldanamycin

Ansatrienin

B

0.05

RubK.seq

NapF.seq

NatK.seq

RffK.seq

AnsF.seq

GdnA.seq

Asm43.seq

naphthalenic ansamycins

bezenic ansamycins

Fig. S3
Fig. S4
Fig. S5
Fig. S6

References

