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1. Introduction 

This document describes the delayed stochastic model of the dynamics of the Plac/ara promoter 
(Golding and Cox, 2004) as well as the tuning procedure to match the mean expression levels measured 
experimentally. Our model follows the delayed stochastic modeling strategy proposed in (Ribeiro et al, 
2006), and is implemented in SGNSim (Ribeiro and Lloyd-Price, 2007). An initial model of this genetic 
system at the single cell level is first presented where the relevant chemical components are represented 
explicitly (section 2). From that complete model, we then introduce a reduced version of the model by 
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approximating some components in order to facilitate to tuning and prediction, without affecting the 
relevant dynamics of the system (section 3). The complete set of reactions of the reduced model is 
presented in section 3.4, while the values used for the parameters are presented in section 4.5. 

Afterwards, we present results concerning the spatial distribution of free MS2d-GFP molecules in 
live E. coli cells (section 5), and details on the method of quantification of mRNA target for MS2d-GFP 
in life cells (section 6). Finally, we present an example image of cells taken by epifluorescence 
microscopy (section 7) and supporting information regarding the degree of synchronization of cell 
division following heat shock (section 8). 

2. Explicit Model 

The chemical components and interactions are depicted in Supplementary Fig. 1. The production 
of RNA molecules (and thus fluorescent spots in the cells) is accomplished when an RNA polymerase 
binds to the promoter region and transcribes the DNA into RNA. Transcription is regulated by a repressor 
protein (LacI) and inducers (IPTG and Arabinose). IPTG can bind to LacI, causing a conformational 
change in LacI which results in the protein falling off the promoter, allowing transcription to occur (Lutz 
and Bujard, 1997). Another protein (AraC) can also bind to the promoter. This protein does not modify 
the transcription initiation rate on its own, but when bound to Arabinose, it increases the affinity of the 
RNA polymerases to the promoter region, thereby promoting transcription. GFP molecules are not 
explicitly represented since they always exist in sufficient amounts so as not to be a limiting factor of 
RNA detection.  

 

Supplementary Fig. 1: Components and reactions in the model of the Plac/ara 
promoter and RNA production. Numbers indicate the corresponding reactions. 
Molecule labels are defined in section 2.1. 

2.1. Notation 

Hereafter, we use P to denote the promoter, RP to denote RNA polymerase, R to denote RNA, L 
to denote LacI, I to denote IPTG, and A to denote Arabinose in reactions and equations. 
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The model contains several reversible bimolecular reactions. In general, rates of unbinding are 
denoted by kuXY, where X and Y denote the interacting species. Dissociation constants (KdXY) are denoted 
similarly. For example, KdLI is the dissociation constant between LacI and IPTG. 

The promoter can be in several ‘states’, depending on which substances are bound to it. In the 
following reactions, the promoter with LacI bound to it is denoted PL, whereas PL;¯  denotes the promoter 
with no LacI bound. This notation also applies to Arabinose, where PA and PA;¯  denote the presence or 
absence of an Arabinose molecule bound to an AraC protein which is in turn bound to the promoter. For 
simplicity, we assume that an AraC is always bound to the promoter, given its small dissociation constant 
(on the order of 10-8 M (Timmes et al, 2004)). Similarly, PL;̄  A denotes a promoter with no LacI bound, but 
with Arabinose bound to it. 

Following standard chemical notation, the number of molecules of a chemical species present in a 
cell is denoted [X]. For example, [L] denotes the current number of LacI proteins in the cell. Additionally, 
we use [X]0 to denote the number of a given molecule in the cell at time 0 (the start of the experiment). 

2.2. Transcription 

Transcription is initiated when an RNAP binds to the promoter region, forms the open complex, 
and begins elongating the RNA. This process is modeled in reaction (1) (Ribeiro et al, 2006). 

 )()()( RRPPAL
k

PAL RRPRP t  (1)   

Here, P and R denote time delays used to model the time it takes for this highly complex, multi-
step reaction to occur (Ribeiro et al, 2006). This notation denotes that, for example, the RNA (R) is fully 
transcribed and visible in the cell R seconds after the transcription reaction began. 

When Arabinose binds to the AraC molecule bound to the promoter, it induces transcription by 
actively recruiting RNA polymerases. This is modeled by a reaction which differs from reaction (2) in the 
value of its rate constant (ktA>kt). 
 )()()( RRPPAL

k
PAL RRPRP tA  (2)   

Normally, the RNA molecules are assumed to degrade via a first-order chemical reaction. 
However, the MS2-coated RNA molecules have been shown to have a considerably longer lifetime than 
normal RNA molecules, and cell division was shown to be the largest term in the (Golding et al, 2005). 

2.3. Decay 

The degradation of transcripts is modeled as a first-order process in reaction (3) (Ribeiro et al, 
2006): 

 dkR  (3)   

 
2.4. Interactions of the promoter with LacI and IPTG 

LacI’s binding/unbinding to/from the promoter is modeled by reactions (4) and (5). When LacI is 
bound to the promoter, transcription cannot occur. 
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L

K
k

L PLP dLP

uLP

 (4)   

 LPP L
k

L
uLP  (5)   

IPTG can bind to LacI (reactions (6) and (7)). The complex IL represents  LacI  with a  different  
conformation that has much weaker affinity to the promoter than LacI. In reality, the stability of the bond 
between this complex and the promoter is much weaker. For simplicity, this is modeled by an immediate 
dissociation from the promoter (reaction (8)). 

 
ILLI dLI

uLI

K
k

 (6)   

 LIIL uLIk  (7)   

 
ILPIP L

K
k

L
dLI

uLI

 (8)   

2.5. Interactions of the promoter with AraC and Arabinose 

Since an AraC is assumed to be bound at all times to the promoter, we only model the binding 
and unbinding of the Arabinose to AraC. This event changes the rate of transcription initiation. The 
binding and unbinding of Arabinose to AraC is modeled in reactions (9) and (10), respectively. 

 
A

K
k

A PAP dAP

uAP

 (9)   

 APP A
k

A
uAP  (10)   

3. Reduced Model 

The explicit model contains several parameters that are currently difficult to measure in vivo, and 
some reactions which, under normal conditions, do not significantly affect the dynamics of gene 
expression. To reduce the complexity of the model, we implement some approximations and justify why 
they are appropriate and do not compromise the realism of the simulation. Generally, these 
approximations consist of removing a reaction species which is in sufficient abundance to be considered 
constant. 

3.1. RNA Polymerase 

Under normal conditions, the amount of RP available for transcription events is approximately 
constant in an E. coli at all times (McClure, 1983). For that reason, instead of representing RP explicitly, 
the stochastic rates of reactions (1) and (2) can be multiplied by 20, the known quantity of free RNA 
polymerases per gene in E. coli. 

3.2. Arabinose 

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2011



5 
 

Similar to RP,  when Arabinose is  present  in  the cell,  it  is  present  sufficient  amount  so as  to  be 
assumed as constant. With 6.67 mM (1%) of Arabinose, and given the mean volume of an E. coli (10-15 L, 
from http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi), we estimate that the number of 
molecules of Arabinose in the cell is on the order of 1010. Reactions (9) and (10) can then be simplified to: 

 
A

K
kA

A PP dAP

uAP

 (11)   

 
A

k
A PP uAP  (12)   

 This simplification has the additional important benefit that the Arabinose concentration and KdAP 
no longer need to be expressed in units of molecules per cell. Instead, both can be expressed as a ratio of 
6.67 mM, decreasing the number of parameters required in the model (the cell volume is removed). 

3.3. LacI/IPTG 

Just as Arabinose and RP are  present  in  the system in abundance,  so are LacI  and IPTG. These 
species can be removed with the same benefits as removing Arabinose, by the equilibrium point of 
reactions (6) and (7). The equilibrium values can be then used in simplified versions of reactions (4), (5) 
and (8). From reactions (6) and (7), this equilibrium point is reached when: 

 
dLIKILLI ][]][[  (13)   

Assuming that are no IPTG·LacI complexes initially present in the system, the amount of the 
complex can be written in terms of the initial concentrations of LacI (denoted by [L]0). Similarly, the 
amount of IPTG can also be written as a function of LacI. 

 

00

0

][][][][
][][][

LILI
LLIL

 (14)    

(15)   

The solution for [L] is: 

 

2
][4

][ 0
2 LKbb

L dLI , dLIKLIb 00 ][][  (16)   

These calculations remove the need for reactions (4) and (5), and the equilibrium concentrations 
of [L] and [I] can be inserted into the reaction rates of reactions (6), (7) and (8).  

This approximation yields two advantages. First, as with Arabinose, it is no longer necessary to 
translate IPTG and LacI concentrations and KdLP into  molecules  per  cell.  Second,  we  have  sped  up  the  
simulation considerably by removing two high-frequency reactions, since the runtime of the SSA largely 
depends on the propensity of the reactions. 
 The validity of this approximation depends on the actual rate of kuLI (and  therefore  the  time  it  
takes to reach equilibrium), and the amounts of LacI and IPTG. In vitro studies have measured kuLI to be 
0.2 s-1 (Dunaway et al, 1980), implying that the system should be sufficiently close to equilibrium within 
one minute. The amount of LacI proteins in these cells has been measured to be on the order of 5000 
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(Lanzer and Bujard, 1988). Based on the average volume of an E. coli (10-15 L,  from  
http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi), we estimate that the amount of 
molecules of IPTG in the cell when induced by 1mM of IPTG is on the order of 109. All the conditions 
for the applicability of this approximation are therefore met by at least one order of magnitude. 

3.4. The Final Model 

The final delayed stochastic model consists of reactions (17) to (24): 

 )()( RPAL
kR

AL RPP tp  (17)    

 )()( RPAL
kR

AL RPP tAp  (18)    

 dkR  (19)    

 
L

K
kL

L PP dLP

uLP

 (20)   

 
L

k
L PP uLP  (21)   

 

L
K

kI

L PP dLI

uLI][

 (22)   

 
A

K
kA

A PP dAP

uAP

 (23)   

 
A

k
A PP uAP  (24)   

4. Constants and Tuning 
4.1. Promoter Occupancy 

Reaction pairs (20)-(21) and (23)-(24) determine the occupancy state of the promoter. It is useful 
in this case to precisely define the quantity ‘Promoter Occupancy’ as the expected fraction of time that the 
promoter is bound by LacI, or Arabinose (by the AraC/Arabinose complex). This fraction can be 
calculated from the propensities of the reactions as: 

 

d
d KX

XKXO ),(  (25)   

In (25), X denotes the concentration of the binding molecule, and Kd is the dissociation constant. 
For example, O([L]0,KdLP)  is  the  fraction  of  time  that  the  lac  repressor  is  bound  to  the  promoter  in  the  
absence of IPTG. 

4.2. Accounting for degradation and the promoter open complex formation duration ( P) 

To calculate the values of the transcription rate constants (kt and ktA) necessary to obtain a given 
mean level of RNA after a transient time t,  we  first  estimate  the  mean  field  behavior  of  a  system  
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producing RNA with rate kp, which can degrade with rate kd, without accounting for the effects of P as a 
limiting factor of transcription initiation. The differential equation describing such mean field behavior is: 

 
dp kRk

dt
Rd ][][

 (26)   

Solving for kp yields: 

 
dtk

d
p e

kRRk
1

][][  (27)   

Finally, the values of the transcription rate constants (kt and ktA) are not exactly equal to kp due to 
the effects of the promoter open complex formation. This effect can be accounted for by discounting the 
expected time that the promoter spends in this state, giving the mean rate at which the transcription 
reaction must occur to reach a mean RNA count of [R] after t seconds: 

 

][1
][

][
Rk

Rk
Rk

pp

p  (28)    

We can now use (28) to calculate the necessary transcription rate to reach a given mean amount 
of RNA molecules after a transient. 

4.3. Tuning kt, ktA, KdLP 

We now tune some of the free parameters (not yet experimentally measured) of the model to 
match the experimental results. The parameters kt and ktA determine the maximum possible RNA 
production rate, while KdLP determines how strongly LacI represses the system. 

First, we deduce the production rate of RNA, according to reactions (17) and (18). The fraction of 
time that the promoter is, on average, not repressed by LacI (and thus is free for these reactions) is given 
by (1-O([L],KdLP)). Similarly, the fraction of time that the promoter is in state PA is given by O([A],KdAP)). 
The mean production rate of RNA is a mixture of the propensities of the two reactions that lead to RNA 
production, weighted by the fraction of times each is expected to occur: 
 

dAPtAdAPtdLPP KAOkKAOkKLORRk ],[],[1],[1][][  (29)   

We can now write formulas for the mean production rates of three cases: full repression of the 
promoter (k1 = k([R]1), where [R]1 was measured to be 0.532 RNAs), activation by Arabinose alone (kA = 
k([R]A), where [R]A was measured to be 0.612 RNAs), and full activation (kM = k([R]M), where [R]M was 
measured to be 3.36 RNAs).  

 

dAPtAdAPtPM

dAPtAdAPtdLPPA

dLPtP

KOkKOkRk
KOkKOkKLORk

KLOkRk

,1,11][
,1,11,][1][

],[1][

0

1

 
(30)    

(31)    

(32)   

Solving the system of equations, we get: 
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1  (33)   

 
0

1

0 ][
][
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tP

tP
dLP  (34)    

 

dAPP

dAPtM
tA KOR

KOkkk
,1][

,11
 (35)  

4.4. Cell Division 

The simulation of multiple cells, subject to cell division, is modeled by the CellLine simulator 
(Ribeiro et al, 2007), which can model cell division and impose desired distributions of partitioning of 
RNA molecules between the daughter cells at cell division. However, all calculations thus far have 
assumed that there is no cell division. To obtain the correct mean production rate with asynchronous 

division, the value of kd in section 4.2 is increased by adding 
g
2ln

, where g is the generation time. 

4.5. Values of Constants and Parameters 

Constant Value Source 
[RP] 20 molecules McClure (1983) 

t 3600 – E( R) = 3465.9 s Ourselves 
P 32* s Lutz and Bujard (1997) 
R P + (Gene Length, Elongation Rate-1) s  

Gene Length mRFP1 Length + 96 BS Length = 4287 bp  
mRFP1 Length 654 bp Zhang et al (2002) 
96 BS Length 3633 bp Golding and Cox (2004) 

Elongation Rate 42 bp·s-1 Gotta et al (1991) 
[L]0 5000 molecules = 8.3 × 10-3 × 1x [I] Lanzer and Bujard (1988) 
kuLP 0.04 s-1 Dunaway et al (1980) 
KdLI 0.1† × 1x [I] Lutz and Bujard (1997) 
kuLI 0.2 s-1 Dunaway et al (1980) 
KdAP 0.1† × 1x [A] Lutz and Bujard (1997) 
kuAP 1.5 s-1 Miller et al (1983) 

Supplementary Table 1: Constants. 

Parameter Value Source/Section 
kd 0 s-1 Golding et al (2005) 
kt 4.191 × 10-5 [RP]-1s-1 Section 4.3 

                                                             
* Since the transcription events are rare (a few per cell lifetime), we do not model the promoter delay as a 
distribution, but rather as a constant value. We observed no significant difference when P followed a distribution 
with realistic variance (Lutz and Bujard, 1997). 
† Approximated from the induction curve from Lutz and Bujard (1997) 
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ktA 4.886 × 10-5 [RP]-1s-1 Section 4.3 
KdLP 1.879 × 10-3 × 1x [I] Section 4.3 

Supplementary Table 2: Model tuning in Fig. 5. 

Parameter Value Source/Section 
kd 1/600 s-1 Bernstein (2002) 
g 1800 s Section 4.4 
kt 3.727 × 10-4 [RP]-1s-1 Section 4.3 
ktA 4.370 × 10-4 [RP]-1s-1 Section 4.3 

KdLP 1.492 × 10-3 × 1x [I] Section 4.3 
Supplementary Table 3: Model tuning in Table 2 and subsequent figures. 

5. Uniformity of the MS2d-GFP distribution 

The MS2d-GFP tagging proteins are  expressed from a strong promoter  (PLtetO-1) on a high-copy 
number plasmid (PROTET-K133). Within the duration of our measurements we observed that there was 
always enough MS2d-GFP in the cells to properly detect all target RNA molecules. This can be assessed 
by measuring the uniformity of the background fluorescence. This assessment further shows that if 
partitioning errors in the MS2d-GFP exist, they have negligible effects on the detection of target RNA in 
daughter cells.  

The simplest way to make this assessment is to quantify the uniformity of the fluorescence 
background of cells with no target RNA molecules. We first establish a measure of uniformity based on 
the local spatial entropy of the fluorescence in the image each cell and then show that it is able to detect 
clumping and gradients in model cells with clumps and gradients. The measure is then applied to cells 
expressing MS2d-GFP without the target RNA to determine if the MS2d-GFP clumps and/or tends to be 
localized in any particular region of the cell. 

5.1. Clumping and spatial distribution of MS2d-GFP in the cells 

To  determine  if  the  MS2d-GFP  molecules  form  clumps  and/or  tend  to  be  co-localized  in  any  
particular region of the cell, we compute the local spatial entropy of the intensity of the pixels composing 
a bacterium, which allows us to quantify the degree of randomness of a set of variables (Shannon 1948). 
Here, we aim to show that all neighborhoods of pixels within the cell have similar distributions of 
fluorescence intensities among the pixels within each neighborhood, that is, that they have no detectable 
gradients or clumps of MS2d-GFP. The entropy Hk in a neighborhood of k pixels is defined as: 

 ( ) log( ( ))
k

kH p p
y

y y  
(36)  

where y is the vector of pixel intensities in the neighborhood,  is the domain of the elements of y, and 
p(y) is its probability measure. 

Entropy H1 informs us of how diverse the intensities of the pixels composing the cell are, but not 
whether there are correlations between the intensities of neighboring pixels. If MS2d-GFP molecules 
clump or tend to be preferentially located in any particular region of the cell, these correlations ought to 
exist. If such correlations do not exist, then the entropy of the joint distribution of the intensities of 
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neighboring pixels should equal kH1 (since the pixel intensities are independent), otherwise, it is smaller 
than this value. The minimum possible (totally correlated pixel intensities) Hk equals the entropy of a 
single pixel H1. A simple way to quantify effects of possible spatial correlations or gradients in pixel 
intensities is then the ratio between Hk and H1. To have a normalized measure of correlation, we define Jk, 
ranging from k-1 to 1, as: 

 

1

k
k

HJ
kH

 (37)  

We measure the two-pixel neighborhood entropy H2 from both vertical and horizontal pairs of 
adjacent pixels. For each cell segmented from the images from the microscope, we first subtract the mean 
pixel intensity from each pixel, and scale the resulting intensities by the variance of the distribution of 
pixel intensities. The scaled pixel intensities were then binned into bins of size 0.2 per unit variance. The 
aforementioned scaling is required for the entropies of different cells to be comparable, due to the effects 
of the binning. 

5.2. Generating spatial patterns and clumpiness in model cells 

 Model cells with various degrees of clumpiness are generated from cell shapes taken from real 
cells with the following algorithm. Let the x axis correspond to the major axis of the cells, and I(x,y) be 
the gray level of the pixel at (x,y). The algorithm proceeds as follows: 

1. Set all I(x,y) = 0 
2. Repeat N times: 

a. Select xc, yc uniformly from the pixels in the real cell. 
b. Set I(xc, yc) = I(xc, yc) + 1 

3. Convolve I with a Gaussian kernel with standard deviation  
 

The degree of clumpiness of model cells is then determined by the choice of parameters N and . 
Larger N and/or larger  produce less clumpiness. We use two sets of values of (N, ), namely, (25, 1) 
and (100, 3), as these produce different, both detectable, degrees of clumpiness. 

We also model cells with gradients, where the gradients aim to mimic what would be observed if 
the MS2d-GFP molecules were preferentially localized near, e.g., the cell poles or approximately along 
the cell border. Gradients are generated as follows: 

 
0 0( , ) ( ) ( )p pI x y c x x y y  (38)  

where x0 and y0 are the coordinates of the cell center and, p determines the order of the gradient. To attain 
a linear gradient we set p to  1.  For  a  quadratic  gradient,  we  would  set  p to 2. By changing c, the 
eccentricity of the gradient can be varied.  

5.3. Null model cells with no spatial correlations between pixel intensities 

 Null model cells without spatial correlations between pixel intensities can be generated by, for 
each  pixel,  generating  an  intensity  value,  drawn  from the  distribution  of  pixel  intensities  of  a  real  cell.  
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However, a procedure is necessary prior to this, since real cells have two external sources of spatial 
correlations in the intensities of neighbor pixels, regardless of the existence or not of clumping or 
accumulation of MS2d-GFP molecules at any region of the cell. One source is the point spread function 
of the microscope. Since its effects cannot be removed, we expect slightly higher local correlations in real 
cells than in null model cells. The other source is the rod shape of the cells, whose effect can be accounted 
for in null model cells for proper comparison.  

 To generate null model cells from real ones that account for the shape of a cell, first, we remove 
the effect of the rod-shape from the pixels of a real cell by dividing by a scaling factor (described below). 
From the distribution of resulting pixel intensities, we generate the intensity of each pixel of the model 
cell.  Next,  we  reintroduce  the  effect  of  the  rod  shape  into  the  pixel  intensities  of  the  model  cell  by  
multiplying each pixel by the scaling factor. This allows null model cells to be generated that lack spatial 
correlations in pixel intensities except due their shape. The scaling factor to account for the rod shape 
of the cells for the pixel at (x,y) is: 

 
min

min

( , )( , )
max( )
d x ys x y

d
 (39)  

where dmin(x,y) is the Euclidean distance to the nearest pixel that is not in the cell. 

5.4. Clumping of MS2d-GFP 

 We now study whether there is a tendency of MS2d-GFP molecules to accumulate at any 
particular region of the cell or to clump in vivo. We start by performing a test on the method of detection 
of spatial correlations from images of cells taken by confocal microscopy. If the measure of Jk of a cell is 
accurate enough to detect spatial correlations due to clumping of MS2d-GFP, its value should differ 
measurably between a cell with no target RNA and a cell with a target RNA, to which ~60 MS2d-GFP 
molecules are bound at any moment (Golding and Cox, 2004). Supplementary Fig. 2 shows the image of 
a cell with no visible RNA-MS2d-GFP spot (top left). Also shown is its distribution of scaled pixel 
intensities (top right). The image of a cell with one RNA-MS2d-GFP spot is also shown (bottom left) 
along with its distribution of scaled pixel intensities (bottom right). 
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Supplementary Fig. 2: A cell with no visible RNA-MS2d-GFP spot (top left) 
and  its  scaled  pixel  intensities  (top  right).  Also  shown is  a  cell  with  one  RNA-
MS2d-GFP spot (bottom left) and its distribution of scaled pixel intensities 
(bottom right). 

Comparing the distributions in Supplementary Fig. 2, it is visible that the RNA-MS2d-GFP spot 
creates a small peak in the highest intensities in comparison to the cell with no spot. More spots would 
further increase the height of this peak and thus the difference between the two distributions. The values 
of J2 are 0.91 for the cell with no spot and 0.84 for the cell with one spot. As shown below, and given that 
this measure varies from 0.5 to 1, this difference is significant, allowing the detection of MS2d-GFP 
clumps or gradients, if these exist (regardless of their origin).  

 In Supplementary Fig. 3 we show the image of a real cell (5A) and of a null model cell generated 
from this real cell (5B). Also shown are model cells, one with a linear gradient along the major axis (5C), 
and another with an eccentric quadratic gradient that results in stronger pixel intensities near the cell poles 
(5D). Two model cells with different degrees of artificial clumpiness and their distributions of pixel 
intensities are also shown (5E and 5F).  
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Supplementary Fig. 3.  Images  of  a  real  cell  (A)  and  of  a  null  model  cell  (B)  
generated from the real cell. Also shown are model cells, one with a linear gradient 
along the major axis (C) and another with a quadratic gradient that creates stronger 
pixel intensities near the poles (D). Two model cells with different degrees of 
artificial clumpiness are also shown (E and F). 

 Each model cell is used as a null model to test for the existence of a type of pattern in the spatial 
distribution of MS2d-GFP molecules in real cells. The cells generated by randomly choosing the pixel 
intensities from the original distribution of pixel intensities are used to determine, by comparison, if there 
are local correlations between the intensities of neighbor pixels that are not detectable by eye. If no such 
local pixel intensity correlations exist, cells and model cells with random pixels intensities ought to have 
identical values of Jk. 

 The model cells with gradients are used as a null model for possible accumulation of MS2d-GFP 
molecules at any particular location of the cell. If such preferential locations were to exist, they would 
result in gradients of pixel intensities in the real cells and cause Jk to be lower than in the cells with 
randomized pixel locations. 

 Finally, the model cells with artificial clumps are used as a null model for possible accumulation 
of  MS2d-GFP molecules  at  certain locations in the cell.  If  these exist,  they would cause Jk to  be lower 
than in the cells with randomized pixel locations. The values of J2 of the cells A to F depicted in 
Supplementary Fig. 3 are shown in Supplementary Table 4. For this particular cell, it is possible to 
conclude that there are no spatial correlations between neighboring pixel intensities, as its value of J2 is 
identical to that of the model cell with randomized pixel locations. Since J2 is much higher than the J2 of 
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the model cells with artificial gradients and clumps, we can also conclude that this cell has no gradients or 
clumps. 

Cell H2 H1 J2 

Real Cell, no spot 5.44 2.98 0.91 

Real Cell, one RNA-MS2d-GFP spot 4.88 2.92 0.84 

Null model cell 5.44 2.97 0.92 

Linear gradient 3.58 2.92 0.61 

Quadratic gradient 3.71 2.79 0.66 

Small artificial spots 2.76 1.78 0.77 

Large artificial spots 4.74 2.98 0.79 

Supplementary Table 4: Values, for the cell and the null-model cells depicted in 
Supplementary Fig. 3, of their entropy in a two-pixel neighborhood (H2), their 
entropy of individual pixels (H1)  and  the  value  of  J2, a measure of spatial 
correlations, attained from the ratio between H2 and H1. 

 

Supplementary Fig. 4: Distribution of J2 for cells induced only with aTc (data is 
from 145 cells). 

 Supplementary Fig. 4 shows the distribution of J2 values for 145 cells induced with only aTc for 
one hour. The mean value of J2 of each of these cells is 0.914. We generated 10 models cells, from each 
of these 145 cells, with pixel intensities randomly drawn from the distribution of pixel intensities of the 
real cell. The mean value of J2 of  the  1450  model  cells  is  0.93,  identical  to  that  of  the  real  cells.  This  
demonstrates that there is no indication of accumulation of MS2d-GFP molecules at any particular region 
of the cells, or formation of clumps, one hour after induction by aTc. 
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 Further note that the value of J2 for the cell with a target RNA (spot), shown in Table 2 is in fact 
smaller than more than 95% of the values in the distribution shown in Supplementary Fig. 4. 

 A final test can be made to further verify these conclusions. If MS2d-GFP molecules do not form 
clumps or accumulate at any region of the cells, then the value of J2 of cells measured over a long period 
of time ought to be constant (aside from small stochastic fluctuations). We imaged cells at t = 326 s, t = 
1791 s, and t = 3591 s after placed under the microscope, and measured J2 (Table 2). The results show 
that this quantity does not change significantly over time in any cell, further verifying that MS2d-GFP 
molecules neither tend to accumulate at any particular region of the cell, nor aggregate.  

Cell index J2 at t = 326 s J2 at t = 1791 s J2 at t = 3591 s 

1 0.89 0.88 0.89 

2 0.87 0.87 0.87 

3 0.88 0.88 0.87 

4 0.89 0.88 0.89 

5 0.89 0.88 0.88 

6 0.87 0.86 0.87 

7 0.89 0.89 0.89 

Supplementary Table 5: Values of J2 of cells at t = 326, t = 1791, and t = 3591 s. 

6. Quantification of mRNA in cells 

The RNA quantification method used here was proposed in (Golding et al, 2005). The number of 
RNA molecules in each spot is quantified by assuming that the first peak in the distribution of intensities 
of many RNA spots from cells on the same slide corresponds to individual RNA molecules. The 
intensities are then normalized by the intensity of this peak to obtain the number of RNA molecules in 
each spot. This is possible due to the discrete nature of the peaks and the approximately uniformity of the 
distance between consecutive peaks. An example of such a distribution of intensities is shown in 
Supplementary Fig. 5. 

 
 

Supplementary Fig 5: Example distribution of spot intensities obtained from a 
single slide, normalized by the mean intensity of the first peak in the distribution 
which corresponds to a single tagged RNA molecule. 
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7. Example image of cells expressing MS2d-GFP 
 

 

Supplementary Fig 6: Cells expressing MS2d-GFP and RNA target. Bright spots 
in each cell correspond to RNA molecules tagged with ~60-100 MS2d-GFP 
molecules. Cellular background is also fluorescent due to the freely diffusing 
MS2d-GFP molecules. 

8. Assessing the degree of synchrony of cells following a heat shock 

To determine the degree of synchrony in division of cells subject to heat shock, we redid the 
experiment as described in Materials and Methods, except that 30 minutes after induction by IPTG, 8 L 
of  culture  was  placed  between  a  1%  LB  agarose  gel  and  a  microscope  cover  slip.  Starting  from  40  
minutes after induction, images of a set of cells were taken by DIC every 5 minutes for the following 100 
minutes. Cells were held at 37oC while under the microscope. 

The number of cells visible at each point in time is shown in Supplementary Fig. 7. Two 
approximately synchronous divisions were observed (between 55 minutes and 75 minutes and between 
105 minutes and 130 minutes), indicating that the heat shock successfully synchronized the divisions with 
the same efficiency as reported in (Lomnitzer and Ron, 1972). The divisions appear slightly later than the 
jumps in CV of RNA numbers observed in the synchronous experiment (see main document). This is 
expected because the imaging procedure for each time point of the synchronized experiment took 
approximately 10 minutes (this includes obtaining the cells from the liquid culture, placing them under 
the microscope, etc…). From the figure, it is observable that the fraction of cells that do divide under the 
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microscopy at each generation is in line with this type of experiments (Lomnitzer and Ron, 1972)(Laskin 
and Lechevalier, 1984). 

 

Supplementary Fig 7: Number of cells observed under the microscope over time. 
Dots are data points, the line shows the trend. Two approximately synchronous 
divisions can be seen. 

9. PCR Analysis of mRFP1-96bs 

To characterize the heterogeneity of the plasmids in the cells and to determine whether 
recombination errors cause the loss of binding sites or some region of the BAC clone (due to the tandem 
repeats of the binding sites), we have isolated several colonies from the transformant and purified the 
BAC clone after several cell divisions (overnight cell culturing at 37 C at 250 rpm). These cells carried 
the BAC clone with the mRFP1-96bs target gene. To amplify the target gene, the plasmid was isolated 
and purified using a plasmid purification kit (Fermentas).  

The target gene was amplified with Forward primer 5’ GACGTCTGTGTGGAATTGTGAGCGG 
3’  and  Reverse  primer  5’  ACGCGTTCGAAGCTTCGGACGCTA  3’  (Thermo  Scientific)  from  the  
purified BAC clone. Standard PCR protocol was used to amplify the target which was then run using 1% 
agarose gel electrophoresis, shown in Supplementary Fig. 8. The target gene is clearly visible at  4kb in 
each independent colony, in agreement with the expected length of the original target gene reported in 
(Golding and Cox, 2004).   

From Supplementary Fig 8, it is possible to state that there is no significant variance within each 
sample since the width of each band is equal to the width of the bands of the ladder. Also, there are no 
significant differences between bands from different colonies. This indicates that our quantification of 
RNA numbers per  cell  is  not  affected by heterogeneity in the number of  MS2-GFP binding sites  of  the 
target RNA in different cells, given the observed homogeneity of the results from the PCR analysis of the 
target. 
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Supplementary Fig 8: 1% agarose gel electrophoresis of the amplified target gene 
(mRFP1-96bs) from four different colonies (lanes 1-4), and a 10kb ladder (lane 5). 

 

As a side note, we do not rule out the possibility that recombination events in the 96 binding site 
region may have occurred and lowered the number of binding sites of the original construct. What can be 
stated from the results here reported is that if this has occurred, it is a rare event, as it did not introduce 
diversity in the length of the target RNA of cells of the various colonies used in this study. 
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