Table 2S. Differential proteins identified by shogun analysis in WT experiment: peptide details

<table>
<thead>
<tr>
<th>Accession</th>
<th>protein name(^a)</th>
<th>modification(^b)</th>
<th>sequence(^d)</th>
<th>start(^{c})</th>
<th>Length(^{c})</th>
<th>score(^{c})</th>
<th>z(^h)</th>
<th>m/z (^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0CG48</td>
<td>Polyubiquitin-C</td>
<td></td>
<td>TLSDYNIQK</td>
<td>586</td>
<td>9</td>
<td>108.35</td>
<td>2</td>
<td>541.282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESTLHLVLR</td>
<td>671</td>
<td>9</td>
<td>124.08</td>
<td>2</td>
<td>534.315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TITLEVEPSDTIENVK</td>
<td>239</td>
<td>16</td>
<td>264.4</td>
<td>2</td>
<td>894.4726</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IQDKEGIPPDQQR</td>
<td>257</td>
<td>13</td>
<td>88.92</td>
<td>3</td>
<td>508.5963</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGIPPDQQR</td>
<td>489</td>
<td>9</td>
<td>48.21</td>
<td>2</td>
<td>520.2624</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIFAGK</td>
<td>118</td>
<td>6</td>
<td>56.22</td>
<td>1</td>
<td>648.4062</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QIFVK</td>
<td>1</td>
<td>5</td>
<td>55.88</td>
<td>1</td>
<td>634.3908</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IQDK</td>
<td>181</td>
<td>4</td>
<td>13.63</td>
<td>1</td>
<td>503.2872</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TITLEVEPSDTIENVK</td>
<td>163</td>
<td>16</td>
<td>26.42</td>
<td>3</td>
<td>596.6549</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IQDKEGIPPDQQR</td>
<td>637</td>
<td>13</td>
<td>78.77</td>
<td>3</td>
<td>508.6005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLSDYNIQKESTLHLVLR</td>
<td>586</td>
<td>18</td>
<td>58.54</td>
<td>4</td>
<td>533.300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLTGKTITLEVEPSDTIENVK</td>
<td>310</td>
<td>21</td>
<td>26.7</td>
<td>3</td>
<td>763.4107</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLSDYNIQKESTLHLVLR</td>
<td>586</td>
<td>18</td>
<td>17.01</td>
<td>3</td>
<td>737.3748</td>
<td></td>
</tr>
<tr>
<td>P08107</td>
<td>Heat shock 70 kDa protein 1A/1B</td>
<td></td>
<td>VEIIANDQGNR</td>
<td>25</td>
<td>11</td>
<td>186.66</td>
<td>2</td>
<td>614.8208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTPSYVAFTDTER</td>
<td>36</td>
<td>13</td>
<td>187.51</td>
<td>2</td>
<td>744.3601</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATAGDTHLLGGEDFDNR</td>
<td>220</td>
<td>16</td>
<td>105.26</td>
<td>3</td>
<td>559.2482</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HWPFQVINDGDKPK</td>
<td>88</td>
<td>14</td>
<td>83.82</td>
<td>3</td>
<td>560.9522</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IINEPTAAAYGLDR</td>
<td>171</td>
<td>16</td>
<td>240.44</td>
<td>2</td>
<td>844.4579</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLQDFFGGR</td>
<td>348</td>
<td>9</td>
<td>108.35</td>
<td>2</td>
<td>555.2911</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAGVIAGLNLVR</td>
<td>159</td>
<td>12</td>
<td>165.25</td>
<td>3</td>
<td>599.3528</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVNHVFEEFK</td>
<td>236</td>
<td>10</td>
<td>127.43</td>
<td>3</td>
<td>421.2192</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NALESYAFNMD</td>
<td>539</td>
<td>11</td>
<td>147.93</td>
<td>2</td>
<td>644.3094</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FGDPVQSDMK</td>
<td>77</td>
<td>11</td>
<td>150.94</td>
<td>2</td>
<td>611.7972</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NQVALNPQNTVFDAK</td>
<td>56</td>
<td>15</td>
<td>230.1</td>
<td>2</td>
<td>829.932</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEELCSDLFR</td>
<td>301</td>
<td>10</td>
<td>106.47</td>
<td>2</td>
<td>658.3069</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STLEPVEK</td>
<td>311</td>
<td>8</td>
<td>98.81</td>
<td>2</td>
<td>451.7456</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAVEDEGLK</td>
<td>550</td>
<td>9</td>
<td>93.13</td>
<td>2</td>
<td>474.2385</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CQEVISWLANTLAEKDFEHK</td>
<td>573</td>
<td>22</td>
<td>85.5</td>
<td>4</td>
<td>666.3156</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AQIHDLVGGASTR</td>
<td>328</td>
<td>14</td>
<td>174.67</td>
<td>3</td>
<td>489.2741</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LSKEEIER</td>
<td>509</td>
<td>8</td>
<td>42.93</td>
<td>2</td>
<td>502.273</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAAIGIDLGTTSACGVFGQHK</td>
<td>3</td>
<td>22</td>
<td>95.4</td>
<td>3</td>
<td>755.7218</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELEQVCPISGLYQAGGPGGGGFAQGPK</td>
<td>597</td>
<td>31</td>
<td>77.64</td>
<td>3</td>
<td>1019.1778</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QTQIFTTYSDNQPGVLIQVYEGER</td>
<td>423</td>
<td>24</td>
<td>39.44</td>
<td>3</td>
<td>929.4662</td>
<td></td>
</tr>
<tr>
<td>Peptide Sequence</td>
<td>pIC50</td>
<td>pIC50 SD</td>
<td>nM</td>
<td>pIC50 SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIAEAYLGYPVTNAVITVPAYFNDSQR</td>
<td>128</td>
<td>27</td>
<td>67.02</td>
<td>3</td>
<td>1001.1785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINPDEAVAYGAAVQAAILMGDK</td>
<td>361</td>
<td>23</td>
<td>77.57</td>
<td>3</td>
<td>768.7279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FELSGIPPA PR</td>
<td>458</td>
<td>11</td>
<td>39.35</td>
<td>2</td>
<td>592.3334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKEIAEAYLGYPVTNAVITVPAYFNDSQR</td>
<td>126</td>
<td>29</td>
<td>18.39</td>
<td>3</td>
<td>1087.5551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NQVALNPQNTVFDAKR</td>
<td>56</td>
<td>16</td>
<td>18.72</td>
<td>3</td>
<td>605.6606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQVS YK</td>
<td>102</td>
<td>6</td>
<td>42.25</td>
<td>2</td>
<td>362.2049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISQNK</td>
<td>251</td>
<td>6</td>
<td>14.31</td>
<td>2</td>
<td>352.6783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YKAEDEVQR</td>
<td>524</td>
<td>9</td>
<td>80.41</td>
<td>2</td>
<td>569.2831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFGDPVQSDMK</td>
<td>76</td>
<td>12</td>
<td>99.37</td>
<td>2</td>
<td>675.8471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVNHFVEEFKR</td>
<td>236</td>
<td>11</td>
<td>59.34</td>
<td>3</td>
<td>473.2528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKEEIER</td>
<td>510</td>
<td>7</td>
<td>1.02</td>
<td>2</td>
<td>445.7309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEDEGLK</td>
<td>552</td>
<td>7</td>
<td>1.37</td>
<td>1</td>
<td>789.4025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDFFGNR</td>
<td>350</td>
<td>7</td>
<td>9.31</td>
<td>2</td>
<td>442.2097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLEPVEK</td>
<td>312</td>
<td>7</td>
<td>1.02</td>
<td>2</td>
<td>408.2303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALNPQNTVFDAKR</td>
<td>59</td>
<td>13</td>
<td>3.76</td>
<td>2</td>
<td>737.3959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAGLNVL R</td>
<td>163</td>
<td>8</td>
<td>2.39</td>
<td>1</td>
<td>855.5504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDGDKPK</td>
<td>95</td>
<td>7</td>
<td>7.5</td>
<td>1</td>
<td>773.3806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTPSYVAFTDTER</td>
<td>38</td>
<td>13</td>
<td>187.51</td>
<td>2</td>
<td>744.3601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATAGDTHLGGEFDNRR</td>
<td>222</td>
<td>16</td>
<td>105.26</td>
<td>3</td>
<td>559.2482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IINEPTAAAAAYGLDR</td>
<td>173</td>
<td>16</td>
<td>220.44</td>
<td>2</td>
<td>844.4579</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P17066
Heat shock 70 kDa protein 6

Carbamidomethyl+C(5)

<table>
<thead>
<tr>
<th>Peptide Sequence</th>
<th>pIC50</th>
<th>pIC50 SD</th>
<th>nM</th>
<th>pIC50 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEELCS SDLFR</td>
<td>303</td>
<td>10</td>
<td>106.47</td>
<td>2</td>
</tr>
<tr>
<td>STLEPVEK</td>
<td>313</td>
<td>8</td>
<td>98.81</td>
<td>2</td>
</tr>
<tr>
<td>LLQDFNGK</td>
<td>350</td>
<td>9</td>
<td>93.13</td>
<td>2</td>
</tr>
<tr>
<td>HAVITVPAYFNDSQR</td>
<td>142</td>
<td>15</td>
<td>67.49</td>
<td>3</td>
</tr>
<tr>
<td>DAGIAAGLNVR</td>
<td>161</td>
<td>12</td>
<td>42.83</td>
<td>2</td>
</tr>
<tr>
<td>ETAEAYLQGPVK</td>
<td>130</td>
<td>12</td>
<td>24.09</td>
<td>2</td>
</tr>
<tr>
<td>FELSGIPPA PR</td>
<td>460</td>
<td>11</td>
<td>39.35</td>
<td>2</td>
</tr>
<tr>
<td>EVLAWLEHQLAEKEEYEQK</td>
<td>577</td>
<td>21</td>
<td>15.12</td>
<td>4</td>
</tr>
<tr>
<td>AQIHVDVLVGGSTR</td>
<td>330</td>
<td>14</td>
<td>20.97</td>
<td>2</td>
</tr>
<tr>
<td>STLEPVEK</td>
<td>313</td>
<td>8</td>
<td>1.02</td>
<td>2</td>
</tr>
</tbody>
</table>

P34931
Heat shock 70 kDa protein 1-like
<table>
<thead>
<tr>
<th>Sequence</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTQIYTSNDQPGVLIQVYGER</td>
<td>425</td>
<td>24</td>
<td>39.44</td>
<td>3</td>
<td>929.4662</td>
</tr>
<tr>
<td>SINPDEAVAYGAAVQAAILMGDK</td>
<td>363</td>
<td>23</td>
<td>77.57</td>
<td>3</td>
<td>768.7279</td>
</tr>
<tr>
<td>LVSHFVEEFKR</td>
<td>238</td>
<td>11</td>
<td>44.12</td>
<td>3</td>
<td>464.25</td>
</tr>
<tr>
<td>AFYPEEISSLMLTK</td>
<td>114</td>
<td>14</td>
<td>134.18</td>
<td>2</td>
<td>807.9203</td>
</tr>
<tr>
<td>IHDIVLVGGSTR</td>
<td>332</td>
<td>12</td>
<td>31.29</td>
<td>3</td>
<td>422.9159</td>
</tr>
<tr>
<td>GVPQIEVTFDIDANGILNVTATDK</td>
<td>471</td>
<td>24</td>
<td>24.05</td>
<td>3</td>
<td>844.1203</td>
</tr>
<tr>
<td>Carbamidomethyl+C(6)</td>
<td>599</td>
<td>12</td>
<td>28.07</td>
<td>2</td>
<td>738.3609</td>
</tr>
<tr>
<td>ETEAEFLGHPGTVNATVYFAPNNSDQR</td>
<td>130</td>
<td>27</td>
<td>12.77</td>
<td>4</td>
<td>737.6206</td>
</tr>
<tr>
<td>LVAIVDVIDQR</td>
<td>23</td>
<td>12</td>
<td>99.37</td>
<td>2</td>
<td>677.895</td>
</tr>
<tr>
<td>CMQLTDFILK</td>
<td>53</td>
<td>10</td>
<td>55.99</td>
<td>2</td>
<td>634.829</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>35</td>
<td>11</td>
<td>53.15</td>
<td>2</td>
<td>608.3177</td>
</tr>
<tr>
<td>ALVDGPCTQVR</td>
<td>11</td>
<td>12</td>
<td>36.81</td>
<td>3</td>
<td>411.5504</td>
</tr>
<tr>
<td>MTDFDR</td>
<td>103</td>
<td>6</td>
<td>14.31</td>
<td>2</td>
<td>392.6706</td>
</tr>
<tr>
<td>FVEVGRVAYVSFGPHAGK</td>
<td>5</td>
<td>18</td>
<td>17.01</td>
<td>2</td>
<td>798.5957</td>
</tr>
<tr>
<td>Carbamidomethyl+C(6)</td>
<td>389</td>
<td>12</td>
<td>118.11</td>
<td>2</td>
<td>613.8616</td>
</tr>
<tr>
<td>APILIATDVSAR</td>
<td>162</td>
<td>13</td>
<td>27.16</td>
<td>2</td>
<td>684.876</td>
</tr>
<tr>
<td>GDGPICLVLAPTR</td>
<td>195</td>
<td>10</td>
<td>35.83</td>
<td>2</td>
<td>527.2592</td>
</tr>
<tr>
<td>STCICYGAPK</td>
<td>53</td>
<td>11</td>
<td>71.9</td>
<td>3</td>
<td>454.2248</td>
</tr>
<tr>
<td>NFYVEHPEVAR</td>
<td>225</td>
<td>9</td>
<td>32.48</td>
<td>2</td>
<td>511.2846</td>
</tr>
<tr>
<td>LIDFLESQG</td>
<td>436</td>
<td>13</td>
<td>27.16</td>
<td>2</td>
<td>708.8597</td>
</tr>
<tr>
<td>GTAYTFTPGNLK</td>
<td>271</td>
<td>11</td>
<td>33.16</td>
<td>2</td>
<td>674.8478</td>
</tr>
<tr>
<td>QTLWMSATWPK</td>
<td>401</td>
<td>8</td>
<td>42.93</td>
<td>2</td>
<td>437.7347</td>
</tr>
<tr>
<td>GLDVEDVK</td>
<td>326</td>
<td>12</td>
<td>50.48</td>
<td>2</td>
<td>724.3929</td>
</tr>
<tr>
<td>VLEANQAIPK</td>
<td>465</td>
<td>12</td>
<td>36.81</td>
<td>2</td>
<td>663.3567</td>
</tr>
<tr>
<td>DMVGIAQTGSGK</td>
<td>130</td>
<td>12</td>
<td>31.29</td>
<td>3</td>
<td>388.5228</td>
</tr>
<tr>
<td>QLAEDFLR</td>
<td>285</td>
<td>8</td>
<td>38.16</td>
<td>3</td>
<td>331.1744</td>
</tr>
<tr>
<td>LMQLVHRGGGGGGGGGR</td>
<td>468</td>
<td>17</td>
<td>25.17</td>
<td>3</td>
<td>541.9378</td>
</tr>
<tr>
<td>WDSLSEPKEK</td>
<td>42</td>
<td>11</td>
<td>40.94</td>
<td>2</td>
<td>696.3643</td>
</tr>
<tr>
<td>Oxidation+M(5)</td>
<td>326</td>
<td>12</td>
<td>36.81</td>
<td>2</td>
<td>732.3729</td>
</tr>
<tr>
<td>LIDFLESQG</td>
<td>53</td>
<td>10</td>
<td>2.05</td>
<td>2</td>
<td>602.7801</td>
</tr>
<tr>
<td>LMIMEEIMAELK</td>
<td>225</td>
<td>8</td>
<td>1.37</td>
<td>2</td>
<td>447.2381</td>
</tr>
<tr>
<td>LFQIMEAVPGTGR</td>
<td>146</td>
<td>15</td>
<td>90.41</td>
<td>3</td>
<td>540.2966</td>
</tr>
<tr>
<td>VLITDDLAR</td>
<td>324</td>
<td>10</td>
<td>78.53</td>
<td>2</td>
<td>557.847</td>
</tr>
<tr>
<td>GIYAYGFKEKPAIQR</td>
<td>45</td>
<td>16</td>
<td>106.47</td>
<td>3</td>
<td>609.9872</td>
</tr>
<tr>
<td>ATQALVAPLTR</td>
<td>161</td>
<td>7</td>
<td>67.52</td>
<td>2</td>
<td>447.7308</td>
</tr>
<tr>
<td>GYDVIQAQSGTGK</td>
<td>68</td>
<td>14</td>
<td>20.97</td>
<td>2</td>
<td>697.857</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems

This journal is © The Royal Society of Chemistry 2012
<p>| P08729 | Keratin | KEELTLEGIR | 237 | 10 | 42.81 | 2 | 594.337 |
| LNSNTQVVLSSATMPSDVLEVTKK | 202 | 24 | 21.25 | 3 | 863.1458 | | |
| LNSNTQVVLSSATMPSDVLEVTKK | 202 | 23 | 14.17 | 3 | 820.4421 |
| GIDVQQVSLVINYDLPTNR | 334 | 19 | 16.31 | 2 | 1072.5755 |
| DFTSVAMHGDMQK | 295 | 14 | 20.97 | 3 | 527.8979 |
| ELAQQIK | 110 | 8 | 42.93 | 2 | 479.2721 |
| VLLSATMPSDVLEVTKK | 209 | 17 | 6.49 | 2 | 916.016 |
| LQMEAPHII | 146 | 9 | 3.41 | 2 | 466.738 |
| FASFIDK | 101 | 7 | 67.52 | 2 | 414.2146 |
| LLEGESR | 394 | 8 | 66.1 | 2 | 639.3649 |
| LALDIEIAKVR | 209 | 17 | 7.14 | 2 | 414.2146 |
| FLQQQN | 110 | 7 | 39.58 | 2 | 453.7354 |
| TNNK | 96 | 5 | 27.94 | 1 | 589.3348 |
| SLQLDGIIAEVK | 253 | 12 | 34.75 | 2 | 636.8644 |
| LQAEIDNIK | 317 | 9 | 48.05 | 2 | 522.2956 |
| LPDIFAQIIAGLFR | 136 | 13 | 29.87 | 2 | 721.9108 |
| TAAENEFVLKL | 187 | 11 | 29.19 | 2 | 610.8373 |
| GQLEALQVDGG | 149 | 12 | 24.09 | 2 | 621.8342 |
| SIHFSSPFSTSR | 1 | 12 | 34.3 | 2 | 682.8421 |
| AKQEELAALQKR | 351 | 12 | 36.81 | 3 | 462.5872 |
| WTLQQEKSAS | 122 | 11 | 26.18 | 3 | 444.5842 |
| P17844 | Probable ATP-dependent RNA helicase | APIIATDVAR | 391 | 12 | 118.11 | 2 | 613.8616 |
| Carbamidomethyl+C(6) | GDGPICLVLAPTR | 164 | 13 | 27.16 | 2 | 684.876 |
| Carbamidomethyl+C(3) | STCIYGGAPK | 197 | 10 | 35.83 | 2 | 527.5292 |
| LLQVLED | 470 | 8 | 35.15 | 2 | 493.2871 |
| CARBAMIDOMETHYL+C(14) | WNLDEL PK | 45 | 8 | 38.16 | 2 | 507.7692 |
| CARBAMIDOMETHYL+C(14) | ELAQQVQQVAAAECR | 177 | 15 | 19.76 | 3 | 598.2879 |
| CARBAMIDOMETHYL+C(14) | TTYLVDEADR | 241 | 11 | 26.18 | 2 | 648.324 |
| CARBAMIDOMETHYL+C(14) | QLAEDFLK | 287 | 8 | 38.16 | 2 | 482.2676 |
| CARBAMIDOMETHYL+C(14) | TSLSYLPAIVHINHQFLEER | 144 | 20 | 15.68 | 3 | 787.7605 |
| CARBAMIDOMETHYL+C(14) | SCYGGAPK | 197 | 10 | 1.71 | 1 | 1035.4958 |
| CARBAMIDOMETHYL+C(3) | IILDLISEPPIK | 207 | 12 | 143.04 | 2 | 670.9103 |
| CARBAMIDOMETHYL+C(3) | NTDEMVREL | 37 | 9 | 71.21 | 2 | 553.7667 |
| CARBAMIDOMETHYL+C(5);CARBAMIDOMETHYL+C(6) | LFQECCHSTDTR | 179 | 12 | 34.3 | 3 | 517.2251 |
| CARBAMIDOMETHYL+C(5);CARBAMIDOMETHYL+C(6) | RPAEDMEEEQAFKR | 21 | 14 | 33.97 | 3 | 157.2251 |
| CARBAMIDOMETHYL+C(5);CARBAMIDOMETHYL+C(6) | IIITGTDQQIQAQYLQSQVK | 433 | 23 | 80.24 | 3 | 863.8071 |
| CARBAMIDOMETHYL+C(5);CARBAMIDOMETHYL+C(6) | GSYGDLGGPIITTQVTIPK | 377 | 19 | 23.26 | 4 | 480.0991 |</p>
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Score</th>
<th>p-Value</th>
<th>Charge</th>
<th>Spectrum ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLIHQSLAGGIIGVK</td>
<td>148</td>
<td>55.48</td>
<td>3</td>
<td>506.9834</td>
</tr>
<tr>
<td>IDEPLEGSEDAR</td>
<td>422</td>
<td>39.35</td>
<td>2</td>
<td>630.3005</td>
</tr>
<tr>
<td>VVLJGGKPDR</td>
<td>191</td>
<td>28.84</td>
<td>2</td>
<td>527.3311</td>
</tr>
<tr>
<td>GPPPPPPGR</td>
<td>287</td>
<td>68.2</td>
<td>2</td>
<td>436.2401</td>
</tr>
<tr>
<td>MPPGR</td>
<td>263</td>
<td>27.94</td>
<td>1</td>
<td>557.2886</td>
</tr>
<tr>
<td>TALIIHGLAR</td>
<td>23</td>
<td>54.57</td>
<td>2</td>
<td>533.808</td>
</tr>
<tr>
<td>Carbamidomethyl+C(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGEWVGLCK</td>
<td>84</td>
<td>32.48</td>
<td>2</td>
<td>531.2807</td>
</tr>
<tr>
<td>DVIEEYFK</td>
<td>121</td>
<td>42.93</td>
<td>2</td>
<td>521.7644</td>
</tr>
<tr>
<td>Carbamidomethyl+C(5);Carbamidomethyl+C(11)</td>
<td>45</td>
<td>31.33</td>
<td>3</td>
<td>712.3372</td>
</tr>
<tr>
<td>QAHLCVLASNCDEPMYVK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFEGNALLR</td>
<td>70</td>
<td>57.24</td>
<td>2</td>
<td>516.7982</td>
</tr>
<tr>
<td>QVVNIPSFIVR</td>
<td>139</td>
<td>53.15</td>
<td>2</td>
<td>636.384</td>
</tr>
<tr>
<td>LDYILGLK</td>
<td>93</td>
<td>70.87</td>
<td>2</td>
<td>467.7846</td>
</tr>
<tr>
<td>HIIDFSLR</td>
<td>155</td>
<td>42.59</td>
<td>1</td>
<td>887.4672</td>
</tr>
<tr>
<td>IPDWFVLNR</td>
<td>78</td>
<td>84.84</td>
<td>2</td>
<td>530.7861</td>
</tr>
<tr>
<td>VITIMQNPR</td>
<td>66</td>
<td>40.26</td>
<td>2</td>
<td>536.3046</td>
</tr>
<tr>
<td>IAFAITAIK</td>
<td>25</td>
<td>32.48</td>
<td>2</td>
<td>474.3023</td>
</tr>
<tr>
<td>YSQVLANGLDNK</td>
<td>94</td>
<td>34.75</td>
<td>2</td>
<td>661.3432</td>
</tr>
<tr>
<td>HFWGLR</td>
<td>124</td>
<td>28.28</td>
<td>2</td>
<td>408.22</td>
</tr>
<tr>
<td>FQHILR</td>
<td>8</td>
<td>28.28</td>
<td>2</td>
<td>407.2405</td>
</tr>
<tr>
<td>DGGYSQVLANGLDNK</td>
<td>91</td>
<td>19.76</td>
<td>3</td>
<td>541.2811</td>
</tr>
<tr>
<td>P09923(Intestinal-type alkaline phosphatase)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLVQEWLAK</td>
<td>250</td>
<td>47.7</td>
<td>2</td>
<td>550.8133</td>
</tr>
<tr>
<td>FPYLALS K</td>
<td>92</td>
<td>70.87</td>
<td>2</td>
<td>469.7728</td>
</tr>
<tr>
<td>ANFQTIGLSSAAAR</td>
<td>123</td>
<td>76.5</td>
<td>2</td>
<td>660.3641</td>
</tr>
<tr>
<td>SVGVVTTTR</td>
<td>160</td>
<td>48.21</td>
<td>2</td>
<td>460.2645</td>
</tr>
<tr>
<td>AGQLTSEEEDTTTLVTADSHVFSFGYTLR</td>
<td>359</td>
<td>17.95</td>
<td>4</td>
<td>813.903</td>
</tr>
<tr>
<td>YEIIHRDPTLDPSLMENTEALR</td>
<td>294</td>
<td>14.62</td>
<td>4</td>
<td>647.8173</td>
</tr>
<tr>
<td>GFWVGGR</td>
<td>323</td>
<td>55.99</td>
<td>2</td>
<td>572.7972</td>
</tr>
<tr>
<td>GNEVISVMNR</td>
<td>144</td>
<td>113.46</td>
<td>2</td>
<td>559.7924</td>
</tr>
<tr>
<td>VQHASPGTYAHTVNR</td>
<td>169</td>
<td>18.72</td>
<td>3</td>
<td>570.2931</td>
</tr>
<tr>
<td>NLLFLGDGLGVPVTATR</td>
<td>53</td>
<td>78</td>
<td>2</td>
<td>979.0754</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QVPDSAAATATAYLCGVK</td>
<td>106</td>
<td>24.8</td>
<td>2</td>
<td>876.4474</td>
</tr>
<tr>
<td>GSSIFGLAPS K</td>
<td>389</td>
<td>37.94</td>
<td>2</td>
<td>532.2839</td>
</tr>
<tr>
<td>LLSRNPR</td>
<td>316</td>
<td>42.59</td>
<td>2</td>
<td>428.2584</td>
</tr>
<tr>
<td>NGKLGPETPLAMDR</td>
<td>78</td>
<td>20.97</td>
<td>3</td>
<td>500.2566</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QVPDSAAATATAYLCGVKANFQTIGLSSAAAR</td>
<td>106</td>
<td>23.39</td>
<td>4</td>
<td>763.8879</td>
</tr>
<tr>
<td>GSSIFGLAPSKAQD SK</td>
<td>389</td>
<td>18.72</td>
<td>2</td>
<td>796.9121</td>
</tr>
<tr>
<td>FPYLALKSTYNVDR</td>
<td>92</td>
<td>28.75</td>
<td>2</td>
<td>843.9476</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Sequence</td>
<td>Start</td>
<td>End</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Q14240</td>
<td>Eukaryotic initiation factor 4A-II</td>
<td>AGQLTSEEDTLTLVTADHSHVFSFGGYTLR</td>
<td>359</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLLITDPLAR</td>
<td>325</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIYAYGFEKPSAQQR</td>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VFDMVRNR</td>
<td>162</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFKDOQYIEIFQK</td>
<td>191</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GYDVIQAQSGTQGK</td>
<td>69</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIDVQQVSLVNVIDEPLTR</td>
<td>335</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESSLR</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LQAEAPHVGGTPGR</td>
<td>147</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DFTVSALHGDMDQK</td>
<td>296</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFKDOQYIEIFQK</td>
<td>191</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIYAYGFEKPSAQQR</td>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YAIGFEKPSAQQR</td>
<td>48</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFKDOQYIEIFQK</td>
<td>191</td>
<td>12</td>
</tr>
<tr>
<td>P19338</td>
<td>Nucleolin</td>
<td>LELOQGPR</td>
<td>554</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALELTGLK</td>
<td>362</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEGTEPTAFNLVGGNLFNKR</td>
<td>297</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLVLSNLSYATEETLOVEFEK</td>
<td>486</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VQDELKEVFDEAER</td>
<td>403</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SISLYYTGEK</td>
<td>457</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAEPELK</td>
<td>318</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAPPK</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TFEKQGTEIDGR</td>
<td>444</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KFGYVDGESAEDELEK</td>
<td>347</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GGRGQGGFGGR</td>
<td>656</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRRGGGDKPHQGK</td>
<td>691</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QITVNDLPVGR</td>
<td>139</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KEGGLGPLNPIPLLADVTR</td>
<td>91</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GVLR</td>
<td>135</td>
<td>4</td>
</tr>
<tr>
<td>P32119</td>
<td>Peroxiredoxin-2</td>
<td>MASNARIGKPKAPDFK</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGFAGDAPPR</td>
<td>681</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QEYDEGPSIVHR</td>
<td>1022</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTTMAEREIVR</td>
<td>862</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIAALAPSMK</td>
<td>978</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Oxidation+M()</td>
<td>MVAEVSMPAAASSVK</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>A5A3E0</td>
<td>POTE ankyrin domain family member F</td>
<td>AGFAGDAPPR</td>
<td>718</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QEYDEGPSIVHR</td>
<td>1059</td>
<td>13</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Start</td>
<td>End</td>
<td>Charge</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>SYELPDGQV</td>
<td>SYELPDGQVITIGNER</td>
<td>938</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>DILHENSTLR</td>
<td>DILHENSTLR</td>
<td>642</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>FTTMAEREIVR</td>
<td>FTTMAEREIVR</td>
<td>899</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>EIAALAPSM</td>
<td>EIAALAPSMMK</td>
<td>1015</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>STHVGF</td>
<td>STHVGFENLTNGATAGNGDDGLIPPR</td>
<td>546</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>TTGVMDSGD</td>
<td>TTGVMDSGDGVTHVPIYEIGNALPHATLR</td>
<td>847</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>AVFPSIVGR</td>
<td>AVFPSIVGRPRQQGMMGGMQK</td>
<td>728</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>ICELLS</td>
<td>ICELLSDYKEK</td>
<td>470</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Oxidation+M()</td>
<td>LDAGRELDPDMK</td>
<td>877</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>KGGIT</td>
<td>KGGITVPVGR</td>
<td>255</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>STTTGHL</td>
<td>STTTGHLIYK</td>
<td>20</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>QTVAV</td>
<td>QTVAVGVIK</td>
<td>430</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>QLVG</td>
<td>QLVGVNK</td>
<td>146</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>EHAL</td>
<td>EHALAYTLGVK</td>
<td>134</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>THIN</td>
<td>THINIVIGHDVGK</td>
<td>5</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>VET</td>
<td>VETGILRPGMVVTFAPVNTTEVK</td>
<td>266</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>FETT</td>
<td>FETTK</td>
<td>79</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>QTVAV</td>
<td>QTVAVGVIK</td>
<td>430</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>EHAL</td>
<td>EHALAYTLGVK</td>
<td>134</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>IGGIT</td>
<td>IGGITVPVGR</td>
<td>255</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>P04075</td>
<td>Fructose-bisphosphate aldolase A</td>
<td>153</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>IGEHTPS</td>
<td>IGEHTPSALIMENANVLR</td>
<td>153</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(8)</td>
<td>ALANSLACQGK</td>
<td>331</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>QLLL</td>
<td>QLLLTAADDR</td>
<td>60</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>ADDGR</td>
<td>ADDGRRPPQVIK</td>
<td>87</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>GILA</td>
<td>GILAADESTGSIAK</td>
<td>28</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>ELSDIAHR</td>
<td>ELSDIAHR</td>
<td>14</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>FSH</td>
<td>FSHEEIAMATVTALR</td>
<td>243</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>CPLK</td>
<td>CPLKWPWALTFSYGR</td>
<td>289</td>
<td>15</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>YASICQQNGIVPLEIPDPGHDHLKR</td>
<td>173</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>VNPCI</td>
<td>VNPCIGVILFHETLYQK</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>ALQAS</td>
<td>ALQASALK</td>
<td>304</td>
<td>8</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>IVAPG</td>
<td>IVAPGK</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>GVV</td>
<td>GVVPAGANTGETTQGLDGLSER</td>
<td>111</td>
<td>23</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>PYQY</td>
<td>PYQYPALTEPQK</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>RLQ</td>
<td>RLQGIGTENTEEINR</td>
<td>42</td>
<td>14</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>ENL</td>
<td>ENLKAQQEYVK</td>
<td>318</td>
<td>12</td>
</tr>
<tr>
<td>Carboxy-lysine</td>
<td>CPL</td>
<td>CPLKWPWALTFSYGR</td>
<td>289</td>
<td>15</td>
</tr>
<tr>
<td>P27348</td>
<td>14-3-3 protein theta</td>
<td>FSHEEIAMATVTALR</td>
<td>243</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NLLSVAYK</td>
<td>41</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSTLIMQLLR</td>
<td>212</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(3)</td>
<td>SICTTVLELLDK</td>
<td>91</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(3)</td>
<td>YLIANATNPESK</td>
<td>103</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VFYLK</td>
<td>115</td>
<td>5</td>
</tr>
<tr>
<td>P61981</td>
<td>14-3-3 protein gamma</td>
<td>SICTTVLELLDKYLIANATNPESK</td>
<td>91</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NLLSVAYK</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(6)</td>
<td>DSTLIMQLLR</td>
<td>217</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(6)</td>
<td>ELEAVCQDVLSLLDNYLIK</td>
<td>91</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATVVESSEKAYSEAHEISK</td>
<td>143</td>
<td>19</td>
</tr>
<tr>
<td>Q06830</td>
<td>Peroxiredoxin-1</td>
<td>QITVNDLPVGR</td>
<td>140</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATAVMPDGQFK</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIAQDYGVLK</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVOAFQFTDK</td>
<td>158</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLFIIDDK</td>
<td>128</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADEGISFR</td>
<td>120</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SVDETLR</td>
<td>151</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QGGGLPMNPLVSIPKR</td>
<td>93</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(3);Carbamidomethyl+C(15)</td>
<td>LNCQVIGASVDSHFLAWNTPK</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>HGEVCPAGWKPSDTIKPDVK</td>
<td>168</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISLSDYK</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QGGGLPMNPLVSIPKR</td>
<td>93</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KQGGGLPMNPLVSIPKR</td>
<td>92</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSSGNAKIGHAPNFK</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEGISFR</td>
<td>121</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AQDYGVLK</td>
<td>112</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILGLLDAYLK</td>
<td>137</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>EYFSWEQAFQHVOK</td>
<td>414</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TFLVGER</td>
<td>149</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALIAAQQSGAQVR</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>WFLTCINOPQFR</td>
<td>189</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPEFLR</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPFAHLPK</td>
<td>277</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STFVLDEFK</td>
<td>285</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAGTLTYTPENWR</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLSAPPHFHFQNTNR</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012
<table>
<thead>
<tr>
<th>Q04917</th>
<th>14-3-3 protein eta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VLAPPHPFHFGQTNRTPFGLR 30 21 23.57 3 817.759</td>
</tr>
<tr>
<td></td>
<td>NLLSVAYK 42 8 52.13 2 454.2662</td>
</tr>
<tr>
<td></td>
<td>DSTLIMQQLLR 217 10 122.66 2 595.3385</td>
</tr>
<tr>
<td></td>
<td>YLAEVASGEK 132 10 28.84 2 533.7752</td>
</tr>
<tr>
<td></td>
<td>EQMQPHTPIR 162 10 35.83 3 412.8709</td>
</tr>
<tr>
<td></td>
<td>AVTELNEPLSNEDR 28 14 20.97 3 529.5958</td>
</tr>
<tr>
<td></td>
<td>LGLALNFSVFYYEIQAPEQACLLAK 172 26 22.85 3 991.5005</td>
</tr>
<tr>
<td></td>
<td>GDYYRLAEVASGEK 127 15 19.76 3 574.283</td>
</tr>
<tr>
<td></td>
<td>NSVVEASEAAYKEAFSEQMQPHTPIR 143 29 36.85 4 827.1534</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(22)</td>
</tr>
<tr>
<td></td>
<td>DSTLIMQQLLR 217 10 122.66 2 595.3385</td>
</tr>
<tr>
<td></td>
<td>YLAEVASGEK 132 10 28.84 2 533.7752</td>
</tr>
<tr>
<td></td>
<td>EQMQPHTPIR 162 10 35.83 3 412.8709</td>
</tr>
<tr>
<td></td>
<td>AVTELNEPLSNEDR 28 14 20.97 3 529.5958</td>
</tr>
<tr>
<td></td>
<td>LGLALNFSVFYYEIQAPEQACLLAK 172 26 22.85 3 991.5005</td>
</tr>
<tr>
<td></td>
<td>GDYYRLAEVASGEK 127 15 19.76 3 574.283</td>
</tr>
<tr>
<td></td>
<td>NSVVEASEAAYKEAFSEQMQPHTPIR 143 29 36.85 4 827.1534</td>
</tr>
<tr>
<td></td>
<td>Oxidation+M(22)</td>
</tr>
<tr>
<td></td>
<td>NSVVEASEAAYKEAFSEQMQPHTPIR 143 29 36.85 4 827.1534</td>
</tr>
<tr>
<td></td>
<td>YLAEVASGEK 132 10 28.84 2 533.7752</td>
</tr>
<tr>
<td></td>
<td>EQMQPHTPIR 162 10 35.83 3 412.8709</td>
</tr>
<tr>
<td></td>
<td>AVTELNEPLSNEDR 28 14 20.97 3 529.5958</td>
</tr>
<tr>
<td></td>
<td>LGLALNFSVFYYEIQAPEQACLLAK 172 26 22.85 3 991.5005</td>
</tr>
<tr>
<td></td>
<td>GDYYRLAEVASGEK 127 15 19.76 3 574.283</td>
</tr>
<tr>
<td></td>
<td>NSVVEASEAAYKEAFSEQMQPHTPIR 143 29 36.85 4 827.1534</td>
</tr>
<tr>
<td>P68104</td>
<td>Elongation factor 1-alpha 1</td>
</tr>
<tr>
<td></td>
<td>IGGIGTVPVG 255 11 147.93 2 513.308</td>
</tr>
<tr>
<td></td>
<td>YVTVIIDAPGH 84 12 179.22 3 468.9101</td>
</tr>
<tr>
<td></td>
<td>STTGHLYK 20 10 93.47 2 560.8052</td>
</tr>
<tr>
<td></td>
<td>QTVAVGVK 430 9 65.19 2 457.7852</td>
</tr>
<tr>
<td></td>
<td>VETGLKP GothamVTFAPVNVT 266 24 149.24 3 839.1325</td>
</tr>
<tr>
<td></td>
<td>QLVGVK 146 8 84.84 2 435.7706</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(15)</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 31.81 2 794.9384</td>
</tr>
<tr>
<td></td>
<td>YVTVIIDAPGH 84 16 26.42 3 636.6658</td>
</tr>
<tr>
<td></td>
<td>YEEIVK 166 6 28.28 1 780.4167</td>
</tr>
<tr>
<td></td>
<td>IGGIGTVPVG 255 11 147.93 2 513.308</td>
</tr>
<tr>
<td></td>
<td>YVTVIIDAPGH 84 12 179.22 3 468.9101</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 31.81 2 794.9384</td>
</tr>
<tr>
<td></td>
<td>YEEIVK 166 6 28.28 1 780.4167</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(16)</td>
</tr>
<tr>
<td></td>
<td>GSFKYAWVLDK 51 11 44.12 2 657.3483</td>
</tr>
<tr>
<td></td>
<td>TIIADAPGH 87 9 2.39 2 490.2744</td>
</tr>
<tr>
<td></td>
<td>VETGLKP GothamVTFAPVNVT 266 24 149.24 3 839.1325</td>
</tr>
<tr>
<td></td>
<td>QLVGVK 146 8 84.84 2 435.7706</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(16)</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 18.72 3 584.301</td>
</tr>
<tr>
<td></td>
<td>GSFKYAWVLDK 51 11 44.12 2 657.3483</td>
</tr>
<tr>
<td></td>
<td>TIIADAPGH 87 9 2.39 2 490.2744</td>
</tr>
<tr>
<td></td>
<td>VETGLKP GothamVTFAPVNVT 266 24 149.24 3 839.1325</td>
</tr>
<tr>
<td></td>
<td>QLVGVK 146 8 84.84 2 435.7706</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(11)</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 18.72 3 584.301</td>
</tr>
<tr>
<td></td>
<td>GSFKYAWVLDK 51 11 44.12 2 657.3483</td>
</tr>
<tr>
<td></td>
<td>TIIADAPGH 87 9 2.39 2 490.2744</td>
</tr>
<tr>
<td></td>
<td>VETGLKP GothamVTFAPVNVT 266 24 149.24 3 839.1325</td>
</tr>
<tr>
<td></td>
<td>QLVGVK 146 8 84.84 2 435.7706</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(6)</td>
</tr>
<tr>
<td></td>
<td>LEALDICLPPTPD 228 19 8.36 3 735.74</td>
</tr>
<tr>
<td></td>
<td>Q5VTE0</td>
</tr>
<tr>
<td></td>
<td>IGGIGTVPVG 255 11 147.93 2 513.308</td>
</tr>
<tr>
<td></td>
<td>YVTVIIDAPGH 84 12 179.22 3 468.9101</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 18.72 3 584.301</td>
</tr>
<tr>
<td></td>
<td>GSFKYAWVLDK 51 11 44.12 2 657.3483</td>
</tr>
<tr>
<td></td>
<td>TIIADAPGH 87 9 2.39 2 490.2744</td>
</tr>
<tr>
<td></td>
<td>VETGLKP GothamVTFAPVNVT 266 24 149.24 3 839.1325</td>
</tr>
<tr>
<td></td>
<td>QLVGVK 146 8 84.84 2 435.7706</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(15)</td>
</tr>
<tr>
<td></td>
<td>DGNASGTTLALLDCILPPTPD 219 28 154.97 4 756.145</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 18.72 3 584.301</td>
</tr>
<tr>
<td></td>
<td>GVTPVGR 259 7 3.05 3 838.4582</td>
</tr>
<tr>
<td></td>
<td>LEALDICLPPTPD 228 19 8.36 3 735.74</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(15)</td>
</tr>
<tr>
<td></td>
<td>DGNASGTTLALLDCILPPTPD 219 28 154.97 4 756.145</td>
</tr>
<tr>
<td></td>
<td>STTGHLYKCGGIDK 20 16 18.72 3 584.301</td>
</tr>
<tr>
<td></td>
<td>GVTPVGR 259 7 3.05 3 838.4582</td>
</tr>
<tr>
<td>Carbamidomethyl+C(16)</td>
<td>KDGNASGTTLLEALDCIPLLPTRTDKPLR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Carbamidomethyl+C(16)</td>
<td>SGDAADVDMVPGBKMCVESDSYYPPLGR</td>
</tr>
<tr>
<td>EVSTYIK</td>
<td>134</td>
</tr>
<tr>
<td>THINIVGVHDGGK</td>
<td>5</td>
</tr>
<tr>
<td>YVTIADAPGRDFIK</td>
<td>84</td>
</tr>
<tr>
<td>AAGAGK</td>
<td>44</td>
</tr>
<tr>
<td>GITIDSLWK</td>
<td>69</td>
</tr>
<tr>
<td>EVSTYIKK</td>
<td>172</td>
</tr>
<tr>
<td>Carbamidomethyl+C(16)</td>
<td>KDGNASGTTLLEALDCIPLLPTRTDKPLR</td>
</tr>
<tr>
<td>DMRQTVAVGVIK</td>
<td>427</td>
</tr>
<tr>
<td>VTIDAPGHR</td>
<td>86</td>
</tr>
<tr>
<td>THINIVGVHDGGK</td>
<td>139</td>
</tr>
<tr>
<td>PPTRTDKPLR</td>
<td>236</td>
</tr>
<tr>
<td>EVSTYIK</td>
<td>172</td>
</tr>
<tr>
<td>STTGGHLYK</td>
<td>20</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>ACQSIYPLHDFVPR</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>NCLTNFHGMDLTR</td>
</tr>
<tr>
<td>MMEIMTR</td>
<td>167</td>
</tr>
<tr>
<td>TSYAQHQOQVR</td>
<td>152</td>
</tr>
<tr>
<td>VVDPSK</td>
<td>20</td>
</tr>
<tr>
<td>DWYDVK</td>
<td>28</td>
</tr>
<tr>
<td>KTSYAQHQOQVR</td>
<td>151</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>NLLSVAYK</td>
</tr>
<tr>
<td>DSLTMLQLR</td>
<td>214</td>
</tr>
<tr>
<td>YLAEVATGDDK</td>
<td>129</td>
</tr>
<tr>
<td>ITLDNAYMEK</td>
<td>141</td>
</tr>
<tr>
<td>P31947</td>
<td>14-3-3 protein sigma</td>
</tr>
<tr>
<td>Carbamidomethyl+C(1);Carbamidomethyl+C(2)</td>
<td>NCCSAGILIVLTK</td>
</tr>
<tr>
<td>Carbamidomethyl+C(16)</td>
<td>AEGSDVANAVLDGADCIMLSGETAK</td>
</tr>
</tbody>
</table>

P61247 40S ribosomal protein S3a

Carbamidomethyl+C(6)	NTGIICTIGPASR	43	13	105.9	2	680.3613
Carbamidomethyl+C(16)	GDLGEIIPAEK	294	11	133.96	2	571.3512
Carbamidomethyl+C(1);Carbamidomethyl+C(2)	IYVDGGLISLQVK	173	13	141.62	2	731.9194

P31947 14-3-3 protein sigma

Carbamidomethyl+C(6)	NTGIICTIGPASR	43	13	105.9	2	680.3613
Carbamidomethyl+C(16)	GDLGEIIPAEK	294	11	133.96	2	571.3512
Carbamidomethyl+C(1);Carbamidomethyl+C(2)	IYVDGGLISLQVK	173	13	141.62	2	731.9194

P14618 Pyruvate kinase isozymes M1/M2

Carbamidomethyl+C(6)	NTGIICTIGPASR	43	13	105.9	2	680.3613
Carbamidomethyl+C(16)	GDLGEIIPAEK	294	11	133.96	2	571.3512
Carbamidomethyl+C(1);Carbamidomethyl+C(2)	IYVDGGLISLQVK	173	13	141.62	2	731.9194

P61247 40S ribosomal protein S3a

Carbamidomethyl+C(2)	ACQSIYPLHDFVPR	199	14	86.39	3	568.9569
Carbamidomethyl+C(2)	NCLTNFHGMDLTR	94	13	48.78	3	526.9121
MMEIMTR	167	7	42.59	2	456.2143	
TSYAQHQOQVR	152	10	76.49	3	406.5422	
VVDPSK	20	7	42.59	2	396.2157	
DWYDVK	28	6	28.28	2	413.1919	
KTSYAQHQOQVR	151	11	26.18	2	673.3491	

P31947 14-3-3 protein sigma

Carbamidomethyl+C(6)	NTGIICTIGPASR	43	13	105.9	2	680.3613
Carbamidomethyl+C(16)	GDLGEIIPAEK	294	11	133.96	2	571.3512
Carbamidomethyl+C(1);Carbamidomethyl+C(2)	IYVDGGLISLQVK	173	13	141.62	2	731.9194

P14618 Pyruvate kinase isozymes M1/M2

| Carbamidomethyl+C(6) | NTGIICTIGPASR | 43 | 13 | 105.9 | 2 | 680.3613 |
| Carbamidomethyl+C(16) | GDLGEIIPAEK | 294 | 11 | 133.96 | 2 | 571.3512 |
| Carbamidomethyl+C(1);Carbamidomethy }
<table>
<thead>
<tr>
<th>Carbamidomethyl+C(7)</th>
<th>GIPVLCCKDPVQEAWAEDVDLR</th>
<th>467</th>
<th>22</th>
<th>42.75</th>
<th>3</th>
<th>853.1032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamidomethyl+C(1)</td>
<td>GVNLPGAADVLPASEKDIQDLK</td>
<td>207</td>
<td>23</td>
<td>14.17</td>
<td>3</td>
<td>783.7617</td>
</tr>
<tr>
<td>VVPVP</td>
<td>526</td>
<td>5</td>
<td>41.91</td>
<td>1</td>
<td>510.3291</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(1)</td>
<td>CDENILWLDYK</td>
<td>151</td>
<td>11</td>
<td>26.18</td>
<td>2</td>
<td>734.8534</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>GADFLVTEVENGGSLGSK</td>
<td>188</td>
<td>18</td>
<td>56.25</td>
<td>2</td>
<td>890.4522</td>
</tr>
<tr>
<td>LapTSdPETATAVGAVEASFK</td>
<td>400</td>
<td>22</td>
<td>23.37</td>
<td>2</td>
<td>1088.0775</td>
<td></td>
</tr>
<tr>
<td>VFLAQK</td>
<td>305</td>
<td>6</td>
<td>28.28</td>
<td>2</td>
<td>353.2186</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>GVNLPGAADVLPASEK</td>
<td>207</td>
<td>17</td>
<td>29.64</td>
<td>2</td>
<td>818.9591</td>
</tr>
<tr>
<td>MMIGR</td>
<td>311</td>
<td>5</td>
<td>27.94</td>
<td>1</td>
<td>607.309</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>AGKPVICATQMLESMIK</td>
<td>319</td>
<td>17</td>
<td>24.8</td>
<td>3</td>
<td>626.3209</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7);Oxidation+M(0)</td>
<td>AGKPVICA TQMLESMIK</td>
<td>319</td>
<td>17</td>
<td>17.81</td>
<td>3</td>
<td>631.6644</td>
</tr>
<tr>
<td>Carbamidomethyl+C(1);Carbamidomethyl+C(10)</td>
<td>ILYPVAVAVALDTK</td>
<td>102</td>
<td>13</td>
<td>6.15</td>
<td>3</td>
<td>486.9659</td>
</tr>
<tr>
<td>P23396</td>
<td>40S ribosomal protein S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMLPWDPTGK</td>
<td>187</td>
<td>10</td>
<td>42.81</td>
<td>2</td>
<td>579.3092</td>
<td></td>
</tr>
<tr>
<td>TEIILATR</td>
<td>45</td>
<td>9</td>
<td>65.19</td>
<td>2</td>
<td>515.3213</td>
<td></td>
</tr>
<tr>
<td>FIMESGA</td>
<td>124</td>
<td>8</td>
<td>42.93</td>
<td>2</td>
<td>441.7268</td>
<td></td>
</tr>
<tr>
<td>FVDGLMIHSGDPVNYVTAVR</td>
<td>151</td>
<td>22</td>
<td>33.34</td>
<td>3</td>
<td>823.411</td>
<td></td>
</tr>
<tr>
<td>DEIPTPISEQK</td>
<td>214</td>
<td>13</td>
<td>27.16</td>
<td>3</td>
<td>490.9321</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(3)</td>
<td>GCAIAQAESLR</td>
<td>94</td>
<td>12</td>
<td>70.64</td>
<td>2</td>
<td>644.8452</td>
</tr>
<tr>
<td>FVADGIFK</td>
<td>10</td>
<td>8</td>
<td>50.88</td>
<td>2</td>
<td>448.7513</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(3);Carbamidomethyl+C(4)</td>
<td>HVLLR</td>
<td>173</td>
<td>5</td>
<td>41.91</td>
<td>2</td>
<td>319.2093</td>
</tr>
<tr>
<td>GIKPPEMPMPQPVTA</td>
<td>227</td>
<td>16</td>
<td>37.83</td>
<td>2</td>
<td>787.4175</td>
<td></td>
</tr>
<tr>
<td>FGFPEGSVELYA</td>
<td>76</td>
<td>14</td>
<td>20.97</td>
<td>3</td>
<td>524.9208</td>
<td></td>
</tr>
<tr>
<td>ELAEDGVGEVVR</td>
<td>27</td>
<td>13</td>
<td>29.87</td>
<td>2</td>
<td>712.3472</td>
<td></td>
</tr>
<tr>
<td>NLLSVAYK</td>
<td>42</td>
<td>8</td>
<td>52.13</td>
<td>2</td>
<td>454.2662</td>
<td></td>
</tr>
<tr>
<td>P62258</td>
<td>14-3-3 protein epsilon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSTLIMQLLR</td>
<td>215</td>
<td>10</td>
<td>122.66</td>
<td>2</td>
<td>595.3385</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(3);Carbamidomethyl+C(4)</td>
<td>LICCDILDVLKD</td>
<td>94</td>
<td>12</td>
<td>47.47</td>
<td>2</td>
<td>738.884</td>
</tr>
<tr>
<td>NVIGAR</td>
<td>50</td>
<td>6</td>
<td>28.28</td>
<td>1</td>
<td>629.3769</td>
<td></td>
</tr>
<tr>
<td>VFYYK</td>
<td>118</td>
<td>5</td>
<td>27.94</td>
<td>2</td>
<td>360.1955</td>
<td></td>
</tr>
<tr>
<td>HLIPAANTGESK</td>
<td>106</td>
<td>12</td>
<td>24.09</td>
<td>3</td>
<td>413.2246</td>
<td></td>
</tr>
<tr>
<td>P07195</td>
<td>L-lactate dehydrogenase B chain</td>
<td>Carbamidomethyl+C(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P30041</th>
<th>Peroxiredoxin-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Protein Name</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>P05388</td>
<td>60S acidic ribosomal protein P0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(6)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P62826 GTP-binding nuclear protein Ran</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(2),Carbamidomethyl+C(10)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(6),Carbamidomethyl+C(14)</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(14):Oxidation+M(18)</td>
</tr>
<tr>
<td></td>
<td>P68366 Tubulin alpha-4A chain</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(4),Carbamidomethyl+C(5)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(8)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q9H4B7 Tubulin beta-1 chain</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012
P62277 40S ribosomal protein S13

O43707 Alpha-actinin-4

Carbamidomethyl+C(2)

Carbamidomethyl+C(10)

P13639 Elongation factor 2
<table>
<thead>
<tr>
<th>Protein Sequence</th>
<th>Charge</th>
<th>pI</th>
<th>Mw</th>
<th>Mw (ESI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNFTVDQIR</td>
<td>1</td>
<td>9</td>
<td>32.48</td>
<td>546.2993</td>
</tr>
<tr>
<td>GGGQIPTAR</td>
<td>10</td>
<td>10</td>
<td>91.71</td>
<td>485.2789</td>
</tr>
<tr>
<td>GPLMYISK</td>
<td>9</td>
<td>16</td>
<td>79.16</td>
<td>520.274</td>
</tr>
<tr>
<td>FSVPVVR</td>
<td>8</td>
<td>8</td>
<td>81.83</td>
<td>455.7966</td>
</tr>
<tr>
<td>NMSVIAHVDHGK</td>
<td>12</td>
<td>12</td>
<td>58.27</td>
<td>436.5546</td>
</tr>
<tr>
<td>VFDAIMNFK</td>
<td>9</td>
<td>9</td>
<td>94.38</td>
<td>542.7809</td>
</tr>
<tr>
<td>WLPAGDALLQMITHLPSVPFTAQK</td>
<td>24</td>
<td>108.32</td>
<td>3</td>
<td>867.4852</td>
</tr>
<tr>
<td>TFCQILDPFK</td>
<td>12</td>
<td>12</td>
<td>145.26</td>
<td>747.9126</td>
</tr>
<tr>
<td>CLYASVTAQPR</td>
<td>12</td>
<td>12</td>
<td>116.35</td>
<td>689.867</td>
</tr>
<tr>
<td>STLTDSLVCK</td>
<td>10</td>
<td>10</td>
<td>54.57</td>
<td>562.2892</td>
</tr>
<tr>
<td>GHFVEQSVAGPMFVK</td>
<td>18</td>
<td>18</td>
<td>107.11</td>
<td>654.6881</td>
</tr>
<tr>
<td>IKPVLMNNK</td>
<td>9</td>
<td>9</td>
<td>57.24</td>
<td>537.3201</td>
</tr>
<tr>
<td>SDPимвYSYR</td>
<td>8</td>
<td>8</td>
<td>56.9</td>
<td>461.7394</td>
</tr>
<tr>
<td>KEDLYKPIQR</td>
<td>11</td>
<td>11</td>
<td>26.18</td>
<td>468.2574</td>
</tr>
<tr>
<td>ALLEIQLPELEYQTFQR</td>
<td>18</td>
<td>67.41</td>
<td>3</td>
<td>740.7244</td>
</tr>
<tr>
<td>DSVVAGQFWATK</td>
<td>12</td>
<td>12</td>
<td>68.42</td>
<td>654.8351</td>
</tr>
<tr>
<td>NPAKLPK</td>
<td>7</td>
<td>7</td>
<td>56.56</td>
<td>377.7071</td>
</tr>
<tr>
<td>STASLFLYSENLDNIK</td>
<td>19</td>
<td>19</td>
<td>57.59</td>
<td>735.3806</td>
</tr>
<tr>
<td>LMEPIYLYVEIQPEQVGGIGYVGLR</td>
<td>26</td>
<td>130.61</td>
<td>3</td>
<td>997.1994</td>
</tr>
<tr>
<td>YEWDVAEAR</td>
<td>9</td>
<td>9</td>
<td>60.25</td>
<td>569.7698</td>
</tr>
<tr>
<td>QFAEMYVAK</td>
<td>9</td>
<td>9</td>
<td>57.24</td>
<td>543.7745</td>
</tr>
<tr>
<td>EDLYKPIQR</td>
<td>10</td>
<td>10</td>
<td>45.82</td>
<td>637.8672</td>
</tr>
<tr>
<td>EGALCEENMR</td>
<td>10</td>
<td>10</td>
<td>38.84</td>
<td>604.7632</td>
</tr>
<tr>
<td>AYLPVNESGTADLR</td>
<td>16</td>
<td>16</td>
<td>37.83</td>
<td>900.4648</td>
</tr>
<tr>
<td>FYAFGR</td>
<td>6</td>
<td>6</td>
<td>28.28</td>
<td>380.6929</td>
</tr>
<tr>
<td>FDVHDVTLHADAIHR</td>
<td>15</td>
<td>15</td>
<td>27.84</td>
<td>582.6368</td>
</tr>
<tr>
<td>YVEPIEDVPGNIVGLGVDQFLVK</td>
<td>25</td>
<td>25.23</td>
<td>3</td>
<td>920.4889</td>
</tr>
<tr>
<td>FTDTR</td>
<td>5</td>
<td>5</td>
<td>13.97</td>
<td>639.3062</td>
</tr>
<tr>
<td>IMGNYTPGK</td>
<td>10</td>
<td>10</td>
<td>28.84</td>
<td>539.2792</td>
</tr>
<tr>
<td>GEGQLGPRAER</td>
<td>10</td>
<td>10</td>
<td>28.84</td>
<td>507.2482</td>
</tr>
<tr>
<td>DLIEEDHCAPIK</td>
<td>12</td>
<td>12</td>
<td>31.29</td>
<td>480.5728</td>
</tr>
<tr>
<td>TGTTTFEHAHNMR</td>
<td>14</td>
<td>14</td>
<td>29.54</td>
<td>808.3984</td>
</tr>
<tr>
<td>EGIPADNFLDK</td>
<td>12</td>
<td>12</td>
<td>47.47</td>
<td>666.3526</td>
</tr>
<tr>
<td>ANIRNMSVIAHVDHGK</td>
<td>16</td>
<td>16</td>
<td>37.83</td>
<td>881.4625</td>
</tr>
<tr>
<td>FKSATSPEGK</td>
<td>11</td>
<td>11</td>
<td>39.35</td>
<td>569.7916</td>
</tr>
<tr>
<td>MVNFTVDQRAIMDK</td>
<td>15</td>
<td>15</td>
<td>31.81</td>
<td>890.9479</td>
</tr>
<tr>
<td>GEGQLGPRAER</td>
<td>12</td>
<td>12</td>
<td>28.07</td>
<td>404.8833</td>
</tr>
<tr>
<td>Peptide</td>
<td>MS/PI (g)</td>
<td>Charge</td>
<td>M/PI (g)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>MSVIAHVDHGK</td>
<td>21</td>
<td>11</td>
<td>2.39</td>
<td>2</td>
</tr>
<tr>
<td>FSVSPVVR</td>
<td>498</td>
<td>8</td>
<td>10.22</td>
<td>2</td>
</tr>
<tr>
<td>YISPDQLADLYK</td>
<td>269</td>
<td>12</td>
<td>102.38</td>
<td>2</td>
</tr>
<tr>
<td>IGAEVYHNLK</td>
<td>183</td>
<td>10</td>
<td>141.4</td>
<td>2</td>
</tr>
<tr>
<td>AAVPSGASTGIYEALELR</td>
<td>32</td>
<td>18</td>
<td>117.1</td>
<td>2</td>
</tr>
<tr>
<td>LAQANGWGVMSHR</td>
<td>358</td>
<td>14</td>
<td>125.28</td>
<td>3</td>
</tr>
<tr>
<td>TIAPALVSK</td>
<td>71</td>
<td>9</td>
<td>65.19</td>
<td>2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>SCNCLLLK</td>
<td>335</td>
<td>8</td>
<td>66.1</td>
</tr>
<tr>
<td>Carbamidomethyl+C(4)</td>
<td>IEEELGSK</td>
<td>412</td>
<td>8</td>
<td>70.87</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>LMIEMDGTENK</td>
<td>92</td>
<td>11</td>
<td>86.82</td>
</tr>
<tr>
<td>HIADLANSEVILPVPAFVINNGSHAGNK</td>
<td>132</td>
<td>30</td>
<td>105.02</td>
<td>4</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>GNPTVEVDLFTSK</td>
<td>15</td>
<td>13</td>
<td>70.97</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>VNQIGSIVTESLQACK</td>
<td>343</td>
<td>15</td>
<td>78.72</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>LNVTEQEK</td>
<td>81</td>
<td>8</td>
<td>56.9</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>DYPVVSIEDPFDQDDWAWQK</td>
<td>285</td>
<td>21</td>
<td>66.36</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>VVIGMDVAASEFFR</td>
<td>239</td>
<td>14</td>
<td>33.97</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>YNLTEQEK</td>
<td>81</td>
<td>8</td>
<td>56.9</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>LMIEMDGTENK</td>
<td>92</td>
<td>11</td>
<td>86.82</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>DATNVGDEGFPNILENK</td>
<td>202</td>
<td>19</td>
<td>32.28</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>YDLDFK</td>
<td>256</td>
<td>6</td>
<td>70.19</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>GLFR</td>
<td>28</td>
<td>4</td>
<td>13.63</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>FTASAGIQVGDMLTVTNPK</td>
<td>306</td>
<td>20</td>
<td>29.95</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>GVPVLR</td>
<td>126</td>
<td>6</td>
<td>14.31</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>IDKLMIEDGTENK</td>
<td>89</td>
<td>14</td>
<td>20.97</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>LAQANGWGVMSHR</td>
<td>358</td>
<td>14</td>
<td>28.75</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>APALVSK</td>
<td>73</td>
<td>7</td>
<td>24.53</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>VIFICNLDAR</td>
<td>157</td>
<td>12</td>
<td>83.2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>FIIPNVK</td>
<td>118</td>
<td>8</td>
<td>80.07</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>TLHPDLGTDDKDEQWK</td>
<td>212</td>
<td>16</td>
<td>60.05</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>LVITAGAR</td>
<td>90</td>
<td>9</td>
<td>96.14</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>QVVEASYEVIK</td>
<td>232</td>
<td>11</td>
<td>59.34</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>GEMMDLQHSGLFLR</td>
<td>59</td>
<td>14</td>
<td>41.17</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>VILTSEEEAR</td>
<td>305</td>
<td>10</td>
<td>54.57</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>VHPVSTMIK</td>
<td>269</td>
<td>9</td>
<td>48.21</td>
</tr>
<tr>
<td>Carbamidomethyl+C(14)</td>
<td>DLALVEDK</td>
<td>42</td>
<td>15</td>
<td>121.51</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems

This journal is © The Royal Society of Chemistry 2012
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Charge</th>
<th>Precursor M</th>
<th>Protein</th>
<th>PDB ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNPTVFFDIAVDGEPILGR</td>
<td>1</td>
<td>99.16</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>VSSELFADKVPK</td>
<td>19</td>
<td>96.36</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>SYGKEFEDENFILK</td>
<td>76</td>
<td>39.08</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>KITIADCQGQLE</td>
<td>154</td>
<td>33.16</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>VKEGMNIVEAMER</td>
<td>131</td>
<td>22.39</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>EGMINIVEAMERFGSR</td>
<td>133</td>
<td>39.08</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>TLMNLGGLAVAR</td>
<td>127</td>
<td>119.66</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>IASTMAFK</td>
<td>79</td>
<td>57.24</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>NVGILQMGTNR</td>
<td>171</td>
<td>29.19</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>GPAYGLSREVQQK</td>
<td>4</td>
<td>36.86</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>NFSDNQLQEGK</td>
<td>160</td>
<td>26.18</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>GASQAGMTGYGMPR</td>
<td>182</td>
<td>64.34</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>DDGLFSGDPNWFPK</td>
<td>139</td>
<td>42.22</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>QMEQISQFLQAER</td>
<td>88</td>
<td>35.45</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>YGINTTDIFQTVDLWEGK</td>
<td>102</td>
<td>71.81</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>VLDVIKPK</td>
<td>530</td>
<td>88.71</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>MPSLPSYK</td>
<td>302</td>
<td>52.13</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>ISSDLDGHPVPK</td>
<td>102</td>
<td>24.09</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>IIALDGDTK</td>
<td>334</td>
<td>57.24</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>HQPTIAIAK</td>
<td>232</td>
<td>55.99</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>NMAEQIJEIYSIQSK</td>
<td>264</td>
<td>117.06</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>LDNLVAILDINR</td>
<td>174</td>
<td>118.11</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>TSRPENAHYNNEDFQVQAK</td>
<td>471</td>
<td>14.62</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>NSTFSEIFK</td>
<td>343</td>
<td>9.26</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>LQSQDAPLHQMDIYQK</td>
<td>186</td>
<td>27</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>ILATPPQEDAPSVDIANIR</td>
<td>283</td>
<td>51.57</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>TVPCFSTFAAFFTR</td>
<td>381</td>
<td>51.62</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>SGKPAELLK</td>
<td>594</td>
<td>32.48</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>MGFIDR</td>
<td>603</td>
<td>28.28</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>GICFIR</td>
<td>465</td>
<td>14.31</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>GHAAPILYAVWAEEAGFLAEALLNLK</td>
<td>75</td>
<td>19.96</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>LGHASDRHIALDGDTK</td>
<td>327</td>
<td>29.98</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>DPFITKPLDR</td>
<td>532</td>
<td>22.55</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>PSLPSYK</td>
<td>303</td>
<td>7.02</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>LGDVYVNDAGFTAHK</td>
<td>156</td>
<td>76.73</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>ALESERPFLAILGGAK</td>
<td>199</td>
<td>96.55</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>VDFNVPMK</td>
<td>22</td>
<td>80.07</td>
<td>Transgelin-2</td>
<td>P37802</td>
</tr>
<tr>
<td>P00558 Phosphoglycerate kinase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHAAPILYAVWAEEAGFLAEALLNLK</td>
<td>75</td>
<td>19.96</td>
<td>932.5028</td>
<td></td>
</tr>
<tr>
<td>LGHASDRHIALDGDTK</td>
<td>327</td>
<td>29.98</td>
<td>561.2993</td>
<td></td>
</tr>
<tr>
<td>DPFITKPLDR</td>
<td>532</td>
<td>22.55</td>
<td>601.3366</td>
<td></td>
</tr>
<tr>
<td>PSLPSYK</td>
<td>303</td>
<td>7.02</td>
<td>396.2229</td>
<td></td>
</tr>
<tr>
<td>LGDVYVNDAGFTAHK</td>
<td>156</td>
<td>76.73</td>
<td>545.6041</td>
<td></td>
</tr>
<tr>
<td>ALESERPFLAILGGAK</td>
<td>199</td>
<td>96.55</td>
<td>590.337</td>
<td></td>
</tr>
<tr>
<td>VDFNVPMK</td>
<td>22</td>
<td>80.07</td>
<td>475.2458</td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>FCLDNGAK</td>
<td>48</td>
<td>8</td>
<td>52.13</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>IQLINNMLDK</td>
<td>220</td>
<td>10</td>
<td>42.81</td>
</tr>
<tr>
<td></td>
<td>AHSSMGVNLPKQ</td>
<td>171</td>
<td>13</td>
<td>83.7</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>ACANPAAGSVILLENLR</td>
<td>106</td>
<td>17</td>
<td>78.24</td>
</tr>
<tr>
<td></td>
<td>VNEMIIIGGMAFTFLK</td>
<td>230</td>
<td>16</td>
<td>26.57</td>
</tr>
<tr>
<td></td>
<td>YSLEPVAVELK</td>
<td>75</td>
<td>11</td>
<td>73.82</td>
</tr>
<tr>
<td>Carbamidomethyl+C(2)</td>
<td>DCGPVEVEK</td>
<td>97</td>
<td>9</td>
<td>40.26</td>
</tr>
<tr>
<td></td>
<td>VLNNEIGTSLDFEAGAK</td>
<td>246</td>
<td>18</td>
<td>40.77</td>
</tr>
<tr>
<td></td>
<td>FHVEEGK</td>
<td>123</td>
<td>8</td>
<td>38.16</td>
</tr>
<tr>
<td></td>
<td>VSHVTGGASLELEGK</td>
<td>388</td>
<td>18</td>
<td>17.01</td>
</tr>
<tr>
<td></td>
<td>ITLPDVFTADKFDENAK</td>
<td>279</td>
<td>18</td>
<td>70.77</td>
</tr>
<tr>
<td></td>
<td>SVVMLSHLRGDPVMPDKYSLEPVAVELK</td>
<td>56</td>
<td>30</td>
<td>12.06</td>
</tr>
<tr>
<td></td>
<td>AEPAKIEAFR</td>
<td>141</td>
<td>10</td>
<td>28.84</td>
</tr>
<tr>
<td></td>
<td>GVNLPKQ</td>
<td>177</td>
<td>7</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>P04406 Glyceraldehyde-3-phosphate dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIISAPSADAPMFVMGVNHEK</td>
<td>118</td>
<td>21</td>
<td>277.61</td>
</tr>
<tr>
<td>Carbamidomethyl+C(13)</td>
<td>VPTANSVVVDLTCR</td>
<td>234</td>
<td>14</td>
<td>162.25</td>
</tr>
<tr>
<td></td>
<td>GALQNIIPASTGAAK</td>
<td>200</td>
<td>15</td>
<td>150.04</td>
</tr>
<tr>
<td></td>
<td>VHHNDFGIVEGLMTTVHATATQK</td>
<td>162</td>
<td>24</td>
<td>264.83</td>
</tr>
<tr>
<td></td>
<td>LTGMAFR</td>
<td>227</td>
<td>7</td>
<td>42.59</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7);Carbamidomethyl+C(11)</td>
<td>IISNASCTTNCLAPLAK</td>
<td>145</td>
<td>17</td>
<td>141.4</td>
</tr>
<tr>
<td></td>
<td>VVDLMAMASKE</td>
<td>323</td>
<td>12</td>
<td>83.2</td>
</tr>
<tr>
<td></td>
<td>LVINGNPITIFQERDPSK</td>
<td>66</td>
<td>18</td>
<td>37.58</td>
</tr>
<tr>
<td></td>
<td>VVDLMAMASK</td>
<td>323</td>
<td>11</td>
<td>103.8</td>
</tr>
<tr>
<td></td>
<td>LISWYDNEFGYSNR</td>
<td>309</td>
<td>14</td>
<td>125.28</td>
</tr>
<tr>
<td></td>
<td>RVISAPSADAPMFVGMVNHEK</td>
<td>117</td>
<td>22</td>
<td>105.84</td>
</tr>
<tr>
<td></td>
<td>VEGLMTTVHATATQK</td>
<td>170</td>
<td>16</td>
<td>7.67</td>
</tr>
<tr>
<td></td>
<td>LTGMAFR</td>
<td>227</td>
<td>7</td>
<td>0.68</td>
</tr>
<tr>
<td>Carbamidomethyl+C(13)</td>
<td>VPTANSVVVDLTCR</td>
<td>234</td>
<td>14</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td>P12814 Alpha-actinin-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LASDLLEWIR</td>
<td>281</td>
<td>10</td>
<td>107.44</td>
</tr>
<tr>
<td></td>
<td>VGWEQLTTIAR</td>
<td>714</td>
<td>12</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>HTNITMEH IR</td>
<td>704</td>
<td>10</td>
<td>35.83</td>
</tr>
<tr>
<td></td>
<td>DLLLPWAWEK</td>
<td>21</td>
<td>10</td>
<td>28.84</td>
</tr>
<tr>
<td></td>
<td>FAIQDISVSTEASK</td>
<td>133</td>
<td>14</td>
<td>26.41</td>
</tr>
<tr>
<td></td>
<td>LAKPER</td>
<td>76</td>
<td>6</td>
<td>31.29</td>
</tr>
<tr>
<td></td>
<td>NVNIQNFHISWK</td>
<td>162</td>
<td>12</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>DDPITLNTAFDVAEK</td>
<td>198</td>
<td>16</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>LGVVFQAFIDFMSR</td>
<td>803</td>
<td>15</td>
<td>27.84</td>
</tr>
<tr>
<td>Protein</td>
<td>Modification</td>
<td>Start</td>
<td>Length</td>
<td>Charge</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>VEQIAIAQELNELDYYDPSVNR</td>
<td>Carbamidomethyl+C(6)</td>
<td>450</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>DGLGFCAHLHRHPEDYDGK</td>
<td>Carbamidomethyl+C(5)</td>
<td>174</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>ILAGDKNYTMDELRT</td>
<td>Carbamidomethyl+C(7)</td>
<td>834</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>P23528 Cofilin-1</td>
<td>Carbamidomethyl+C(5)</td>
<td>34</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(6)</td>
<td>174</td>
<td>21</td>
<td>3</td>
<td>823.0893</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>834</td>
<td>15</td>
<td>2</td>
<td>876.454</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>33</td>
<td>20</td>
<td>2</td>
<td>1096.5559</td>
</tr>
<tr>
<td>Carbamidomethyl+C(12)</td>
<td>112</td>
<td>9</td>
<td>2</td>
<td>507.7645</td>
</tr>
<tr>
<td>Carbamidomethyl+C(18)</td>
<td>175</td>
<td>13</td>
<td>3</td>
<td>489.5756</td>
</tr>
<tr>
<td>Carbamidomethyl+C(23)</td>
<td>197</td>
<td>14</td>
<td>2</td>
<td>592.5858</td>
</tr>
<tr>
<td>Q9BUF5 Tubulin beta-6 chain</td>
<td>Carbamidomethyl+C(5)</td>
<td>34</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(6)</td>
<td>174</td>
<td>21</td>
<td>3</td>
<td>823.0893</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>834</td>
<td>15</td>
<td>2</td>
<td>876.454</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>33</td>
<td>20</td>
<td>2</td>
<td>1096.5559</td>
</tr>
<tr>
<td>Carbamidomethyl+C(12)</td>
<td>112</td>
<td>9</td>
<td>2</td>
<td>507.7645</td>
</tr>
<tr>
<td>Carbamidomethyl+C(18)</td>
<td>175</td>
<td>13</td>
<td>3</td>
<td>489.5756</td>
</tr>
<tr>
<td>Carbamidomethyl+C(23)</td>
<td>197</td>
<td>14</td>
<td>2</td>
<td>592.5858</td>
</tr>
<tr>
<td>P60174 Triosephosphate isomerase</td>
<td>Carbamidomethyl+C(2)</td>
<td>85</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(12)</td>
<td>112</td>
<td>9</td>
<td>2</td>
<td>507.7645</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>33</td>
<td>20</td>
<td>2</td>
<td>1096.5559</td>
</tr>
<tr>
<td>Carbamidomethyl+C(18)</td>
<td>175</td>
<td>13</td>
<td>3</td>
<td>483.5759</td>
</tr>
<tr>
<td>Carbamidomethyl+C(23)</td>
<td>197</td>
<td>14</td>
<td>2</td>
<td>592.5858</td>
</tr>
<tr>
<td>Q9BUF5 Tubulin beta-6 chain</td>
<td>Carbamidomethyl+C(5)</td>
<td>34</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(6)</td>
<td>174</td>
<td>21</td>
<td>3</td>
<td>823.0893</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>834</td>
<td>15</td>
<td>2</td>
<td>876.454</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>33</td>
<td>20</td>
<td>2</td>
<td>1096.5559</td>
</tr>
<tr>
<td>Carbamidomethyl+C(12)</td>
<td>112</td>
<td>9</td>
<td>2</td>
<td>507.7645</td>
</tr>
<tr>
<td>Carbamidomethyl+C(18)</td>
<td>175</td>
<td>13</td>
<td>3</td>
<td>489.5756</td>
</tr>
<tr>
<td>Carbamidomethyl+C(23)</td>
<td>197</td>
<td>14</td>
<td>2</td>
<td>592.5858</td>
</tr>
<tr>
<td>P07437 Tubulin beta chain</td>
<td>Carbamidomethyl+C(2)</td>
<td>85</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(12)</td>
<td>112</td>
<td>9</td>
<td>2</td>
<td>507.7645</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>33</td>
<td>20</td>
<td>2</td>
<td>1096.5559</td>
</tr>
<tr>
<td>Carbamidomethyl+C(18)</td>
<td>175</td>
<td>13</td>
<td>3</td>
<td>483.5759</td>
</tr>
<tr>
<td>Carbamidomethyl+C(23)</td>
<td>197</td>
<td>14</td>
<td>2</td>
<td>592.5858</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Modification</td>
<td>Sequence</td>
<td>Score</td>
<td>Mowse Score</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Argininosuccinate synthase</td>
<td>Carbamidomethyl+C(6)</td>
<td>YLTVAAVFR</td>
<td>309</td>
<td>79.16</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(10)</td>
<td>NMMAACDPR</td>
<td>297</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IREEVPDR</td>
<td>154</td>
<td>78.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AILVDEPGTMDSVR</td>
<td>62</td>
<td>113.12</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5);Carbamidomethyl+C(7)</td>
<td>EIVHIQAGQCNGQIGAK</td>
<td>2</td>
<td>35.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FWEVISDEHGIDPTGTYHGDSDLQLDLDR</td>
<td>19</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5);Carbamidomethyl+C(7)</td>
<td>EAEASDCQLQGFQLTHSLGGGTSGMGTLISK</td>
<td>122</td>
<td>11.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVDEQMLNVQNK</td>
<td>324</td>
<td>78.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSYFVEWIPNNVK</td>
<td>336</td>
<td>186.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISVYYNEATGGK</td>
<td>46</td>
<td>105.69</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(4)</td>
<td>TAVCDIPRGLK</td>
<td>350</td>
<td>24.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISEQFTAMFR</td>
<td>380</td>
<td>26.18</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(23);Oxidation+M()</td>
<td>GTMAMVTQIGNSTAIQELFK</td>
<td>359</td>
<td>24.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RISEQFTAMFR</td>
<td>379</td>
<td>29.19</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>LTTPTYGDNLHSVATMSGVTTCLR</td>
<td>216</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVAAVR</td>
<td>311</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPEEFYRN</td>
<td>146</td>
<td>42.59</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>FELSCYSLAPQIK</td>
<td>127</td>
<td>90.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APNTDPDILIEFKK</td>
<td>215</td>
<td>26.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VFIEDVSR</td>
<td>58</td>
<td>35.15</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(23);Oxidation+M()</td>
<td>LTTPYGDNLHSVATMSGVTTCLR</td>
<td>216</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVAAVR</td>
<td>311</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPEEFYRN</td>
<td>146</td>
<td>42.59</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(5)</td>
<td>LTTPTYGDNLHSVATMSGVTTCLR</td>
<td>216</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVAAVR</td>
<td>311</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPEEFYRN</td>
<td>146</td>
<td>42.59</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(15)</td>
<td>GSVLAYSGGLDTSICLWLK</td>
<td>4</td>
<td>48.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIAPWR</td>
<td>140</td>
<td>31.29</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(11)</td>
<td>YLLGTSLARCIAR</td>
<td>86</td>
<td>28.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YVSHGATGK</td>
<td>112</td>
<td>40.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIYETPGTITYHAHLDIEAFTMDR</td>
<td>279</td>
<td>19.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EOQYDVIALYLANIQK</td>
<td>25</td>
<td>27.09</td>
</tr>
<tr>
<td></td>
<td>Oxidation+M(23)</td>
<td>GIYETPGTITYHAHLDIEAFTMDREVR</td>
<td>279</td>
<td>12.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAPVPLYNFSHDVYK</td>
<td>434</td>
<td>55.44</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(8)</td>
<td>LQLIPGVCGR</td>
<td>319</td>
<td>29.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YLNAGAGGIAFAHEK</td>
<td>276</td>
<td>17.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVFQLEK</td>
<td>412</td>
<td>35.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILLEAK</td>
<td>157</td>
<td>42.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTNLTSILSDAETK</td>
<td>449</td>
<td>40.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPSLELPADTVQR</td>
<td>1</td>
<td>26.41</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Start</td>
<td>End</td>
<td>MW (Da)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>P10599</td>
<td>Thioredoxin</td>
<td>8</td>
<td>13</td>
<td>110.67</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxidation+M(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P07197</td>
<td>Neurofilament medium polypeptide</td>
<td>382</td>
<td>9</td>
<td>80.41</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P09601</td>
<td>Heme oxygenase 1</td>
<td>86</td>
<td>14</td>
<td>30.01</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O00410</td>
<td>Importin-5</td>
<td>195</td>
<td>17</td>
<td>18.59</td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamidomethyl+C(1); Carbamidomethyl+C(9)</td>
<td>775</td>
<td>23</td>
<td>36.63</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012
<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Description</th>
<th>Sequence</th>
<th>Mass (Da)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron transfer flavoprotein subunit alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamidomethyl+C(5)</td>
<td>MLVQCMQDQEHP5IR</td>
<td>175</td>
<td>20.59</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(4)</td>
<td>YAACNAVGYMATDFAPGFQK</td>
<td>416</td>
<td>25.8</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(13)</td>
<td>VAAESMLLECAR</td>
<td>720</td>
<td>20.59</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(16)</td>
<td>VQAHAAALINFTEDCPK</td>
<td>457</td>
<td>54.96</td>
<td>2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(11)</td>
<td>TKNVATCISAVGK</td>
<td>961</td>
<td>25.58</td>
<td>2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>TIYGNALCTVK</td>
<td>146</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(7)</td>
<td>LGVEVSLVAGTK</td>
<td>46</td>
<td>33.42</td>
<td>2</td>
</tr>
<tr>
<td>Carbamidomethyl+C(17)</td>
<td>LLVDLADQLHAAVGASR</td>
<td>232</td>
<td>18.59</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(21)</td>
<td>EAFSLFDKDGDGTITTK</td>
<td>14</td>
<td>71.89</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>VLPK</td>
<td>119</td>
<td>64.19</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(11)</td>
<td>NRPTSISWDGLDSGK</td>
<td>47</td>
<td>64.19</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(17)</td>
<td>LLVDLADQLHAAVGASR</td>
<td>232</td>
<td>18.59</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(21)</td>
<td>EAFSLFDKDGDGTITTK</td>
<td>14</td>
<td>71.89</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>VLPK</td>
<td>119</td>
<td>64.19</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(11)</td>
<td>NRPTSISWDGLDSGK</td>
<td>47</td>
<td>64.19</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(17)</td>
<td>LLVDLADQLHAAVGASR</td>
<td>232</td>
<td>18.59</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(21)</td>
<td>EAFSLFDKDGDGTITTK</td>
<td>14</td>
<td>71.89</td>
<td>3</td>
</tr>
<tr>
<td>Carbamidomethyl+C(9)</td>
<td>VLPK</td>
<td>119</td>
<td>64.19</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Description</th>
<th>Sequence</th>
<th>Mass (Da)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calmodulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation+M(5)</td>
<td>VLPK</td>
<td>119</td>
<td>64.19</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Description</th>
<th>Sequence</th>
<th>Mass (Da)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatidylethanolamine-binding protein 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation+M(12)</td>
<td>YREHHLVWNNM</td>
<td>80</td>
<td>23.28</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Description</th>
<th>Sequence</th>
<th>Mass (Da)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>40S ribosomal protein S17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P08708</td>
<td>IAGYVTLHMK</td>
<td>49</td>
<td>36.81</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Description</th>
<th>Sequence</th>
<th>Mass (Da)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>40S ribosomal protein S17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P08708</td>
<td>IAGYVTLHMK</td>
<td>49</td>
<td>36.81</td>
<td>2</td>
</tr>
</tbody>
</table>