Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein - protein interactions in vivo

Brett D. Blakeley†, Alex M. Chapman†, Brian R. McNaughton*†‡

Departments of Chemistry, Biochemistry and Molecular Biology, Colorado State University
Fort Collins, Colorado 80523, USA

E-mail: brian.mcnaughton@colostate.edu

† Department of Chemistry
‡ Department of Biochemistry and Molecular Biology
Table of Contents

Materials and Methods... S3
Data Analysis and Split-GFP protein Sequences
 Analysis of flow cytometry data comparing split-frGFP and split-spGFP .. S4-S5

 Flow cytometry analysis showing no evolution of fluorescence in E. coli coexpressing N-spGFP-Prb and C-sp-GFP Gankyrin .. S5

 Amino acid sequence and charge of split-sg100 GFP, split-frGFP and split-spGFP fragments S6
Materials and Methods

LB Miller’s Broth – BD Biosciences
TOP10 one shot chemically competent E.coli – Life Tech
BL21 star E.coli – Life Tech
Bacteriological agar - Sigma Aldrich
Carbenicillin Disodium Salt – Growcells.com
L(+) arabinose – Calbiochem
Kanamycin – Fisher BioReagents
IPTG, dioxane free – Fermentas
MJ mini gradient thermal cycler – BioRad
Incubating / cooling shaker – VWR
Molecular imager gel doc XR+ system – BioRad
Flow Cytometer and High Speed Cell Sorter using a solid-state iCyt 488nm laser - MoFlo (Dako Colorado, Inc.)
Vent DNA Polymerase – New England Biolabs
10% Mini-Protean TGX precast gels - BioRad
Sonification - W-350 cell disruptor
J2-21 centrifuges – Beckman
Data Analysis and Additional Information

Analysis of flow cytometry data comparing split-frGFP and split-spGFP

All flow cytometry data was analyzed using FloJo software.

Figure S1. Mean cell fluorescence values are provided for Figure 4 in the manuscript. Cells were incubated at 25 °C for the indicated time.

\[
\begin{align*}
180 - 148 &= 32 \\
32/148 &= 0.22 \\
22\% \text{ increase in spGFP cell fluorescence}
\end{align*}
\]

\[
\begin{align*}
11.9 - 8.9 &= 2 \\
2/8.9 &= 0.34 \\
34\% \text{ increase in spGFP cell fluorescence}
\end{align*}
\]

Figure S2. Mean cell fluorescence values are provided for Figure 5 in the manuscript. Cells were incubated at 37 °C for the indicated time.

\[
\begin{align*}
10.2 - 8.2 &= 2 \\
2/8.2 &= 0.24 \\
24\% \text{ increase in spGFP cell fluorescence}
\end{align*}
\]
Figure S3. Mean cell fluorescence values are provided for Figure 7 in the manuscript. Cells were incubated at 37 °C for the indicated time.

Figure S3. Flow cytometry data of *E. coli* expressing N-spGFP-Prb and C-sp-GFP-Gankyrin 24 hours after induction. Gankyrin is an ankyrin repeat protein with no known affinity for Prb. Thus, evolution of fluorescence in *E. coli* coexpressing N-spGFP-Prb and C-sp-GFP-Gankyrin is not an expected result. As anticipated, no cell fluorescence is observed, which shows that split-spGFP fragments do not reassemble in the absence of fused interacting pairs.
Amino acid sequence and net theoretical charge of split-GFP fragments

Superpositive (+34) GFP
N-spGFP
MGHHHHHHGASKGERLFRGKVPIVELKGDVNGHKFSVRGEGKGDATRGKTLKFICTTGGKL
PVPWPTLVTTLTYGVQFCSRYPKHMKRHDFFKSAMPKGYVQERTISFKKDGYKTRAEVKFE
GRTRLVNRIKLKGRDFKEGNIGILGHKLRYNFNSHKVYITADKR

positive amino acids = 13(Arg) + 24(Lys) = 37
negative amino acids = 6(Asp) + 7(Glu) = 13
+24 total charge on N-scGFP

C-spGFP
KNGIKAFKIRHNVKDGVSQLAGHYQQNTPIGRGPVLLPRNHYLSTRSKLSDKPKEKRDHMVLL
EFVTAAGIKHGRDERYK

positive = 7 + 11 = 18
negative = 5 + 3 = 8
+10 total charge on C-spGFP

sg100GFP
N-sg100GFP
MASHHHHHHGASKGEELFTGVVPILVEGDVNGHKFSVSGEGEDAYGKTLKFICTTGGKL
PVPWPTLVTTLTYGVQFCSRYPDHMKRHDFFKSAMPPEGYVQERTIFKFDDGNYKTRAEVKFE
GDRTRVNRIELKIGDFKEDGNILGHKLEYNNSHNVPIIMADKQ

positive = 5 + 14 = 19
negative = 11 + 12 = 23
-4 total charge on N-sg100 GFP

C-sg100GFP
KNGIKVNFKTRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSDPNEKRDMVLL
LEFVTAAGITHGMDLYN

positive = 5 + 2 = 7
negative = 7 + 4 = 11
-4 total charge on C-sg100 GFP

fr-GFP
N-frGFP
MASHHHHHHGASKGEELFTGVVPILVEGDVNGHKFSVSGEGEDAYGKTLKFICTTGGKL
PVPWPTLVTTLTYGVQFCSRYPDHMKQHDFKSFAMPPEGYVQERTISFKKDGYKTRAEVKFE
GDRTRVNRIELKIGFDFKEDGNILGHKLEYNNSHNVYITADKQ

positive = 4 + 14 = 18
negative = 11 + 12 = 23
S7
Supporting Information

-5 total charge on N-sg100 GFP

C-frGFP
KNGIKÄNKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQALSKDPNEKRDHMVLL
EFVTAAGITHGMDELYK

positive = 6 + 2 = 8
negative = 7 + 4 = 11
-3 total charge on C-sg100 GFP