A red light-controlled synthetic gene expression switch for plant systems

Konrad Müller, a David Siegel, a Fernando Rodriguez Jahnke, a,b Katrin Gerrer, a Sabrina Wend, a,b Eva L. Decker, a Ralf Reski, a,c,d Wilfried Weber a,c,e and Matias D. Zurbriggen a,c,*

a Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
b Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
University of Freiburg, Freiburg, Germany
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
d Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
Freiburg Centre for Biosystems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
* Corresponding author: Fax: +49 761 203 97660; Tel: +49 761 203 97656; E-mail: matias.zurbriggen@biologie.uni-freiburg.de

Supplementary Table 1 | Expression vectors and oligonucleotides designed and used in this study.
Supplementary Figure 1 | Effect of clarithromycin on constitutive gene expression in N. tabacum
Supplementary Figure 2 | Spectrum of the white light source
Supplementary Table 1

Expression vectors and oligonucleotides designed and used in this study.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Ref. or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>auxin</td>
<td>Plasmid encoding P<sub>CamV35S</sub> controlled optimized auxin sensor (P<sub>CamV35S</sub>-RLuc-p2A-SM[L2min17]-Fluc-pA)</td>
<td>1</td>
</tr>
<tr>
<td>pKM002</td>
<td>Vector encoding SEAP under control of a modified P<sub>Tet</sub> (tetO<sub>13</sub>-394bp-P<sub>hCMVmin</sub>-SEAP-pA)</td>
<td>2</td>
</tr>
<tr>
<td>pKM006</td>
<td>Vector encoding SEAP under the control of a modified P<sub>Tet</sub> (tetO<sub>13</sub>-422bp-P<sub>hCMVmin</sub>-SEAP-pA)</td>
<td>2</td>
</tr>
<tr>
<td>pKM022</td>
<td>Bicistronic vector encoding PhyB(1-650)-VP16-NLS and Tet-R-PiF6(1-100)-HA under control of P<sub>SV40</sub> (P<sub>SV40</sub>-PhyB(1-650)-VP16-NLS-IRE<sub>Py</sub>-Tet-R-PiF6(1-100)-HA-pA)</td>
<td>2</td>
</tr>
<tr>
<td>pKM033</td>
<td>Vector encoding VEGF<sub>121</sub> under control of a modified P<sub>Tet</sub> (tetO<sub>13</sub>-422bp-P<sub>hCMVmin</sub>-VEGF<sub>121</sub>-pA)</td>
<td>2</td>
</tr>
<tr>
<td>pKM081</td>
<td>Vector encoding SEAP under control of a modified P<sub>ETR</sub> (etra<sub>13</sub>-P<sub>hCMVmin</sub>-SEAP-pA)</td>
<td>3</td>
</tr>
<tr>
<td>pKM082</td>
<td>Vector encoding SEAP under control of a modified P<sub>ETR</sub> (etra<sub>2</sub>-386bp-P<sub>hCMVmin</sub>-SEAP-pA)</td>
<td>This work</td>
</tr>
</tbody>
</table>

A 372 bp fragment was amplified from CFP using oligos oKM090 (5'-caagtagctagcCCCTGAAATTCTGCACC-3') and oKM003 (5'-caagtagctagcTCTTGAAGTTGGCCCTTGGATGC-3'), digested (NheI) and ligated (NheI) into pKM081.

pKM271 | Vector for P_{CamV35S}-controlled expression of PiP-VP16-NLS (P_{CamV35S}-PiP-VP16-NLS-pA) | This work |

PiP-VP16-NLS was amplified from pMF156 using oligos oKM373 (5'-caagtagctagcctatgcggtggcATGAGTCGAGGAGAGGGTCG-3') and oKM374 (5'-caagtagctagccacctccctctcttgcgCCACCGTACTCGTCAATCC-3'), digested (Ndel/EcoRI) and ligated (Ndel/EcoRI) into pM2824.

pKM272 | Vector encoding Fluc under control of a modified P_{Ptr} (P_{Ptr}-3-P_{hSP70min}-Fluc-pA) | This work |

Fluc was excised (EcoRI/HindIII) from pM2836 and ligated (EcoRI/HindIII) into pMF199.

pKM295 | Vector encoding VEGF under control of a modified P_{ETR} (etra₁-P_{hCMVmin}-VEGF₁₂₁-pA) | This work |

VEGF₁₂₁ was excised (EcoRI/NotI) from pKM033 and ligated (EcoRI/NotI) into pM2836.

pKM300 | Bicistronic vector encoding PhyB(1-650)-VP16-NLS and E-PiF6(1-100)-HA under control of P_{SV40} (P_{SV40}-PhyB(1-650)-VP16-NLS-IRE_{Py}-E-PiF6(1-100)-HA-pA) | This work |

IRES_{Py} was amplified from pKM022 using oligos oKM400 (5'-ACCCACCCCAGAGGCCC-3'), while P_{SV40} was amplified from pKM033 (5'-caagtagctagcTCTTGAAGTTGGCCCTTGGATGC-3'), digested (NheI) and ligated (NheI) into pKM081.

pKM301 | Bicistronic vector encoding PhyB(1-650)-VP16-NLS and PiP-VP16(1-100)-HA under control of P_{SV40} (P_{SV40}-PhyB(1-650)-VP16-NLS-IRE_{Py}-PiP-VP16(1-100)-HA-pA) | This work |

IRES_{Py} and PiP-VP16(1-100) were amplified as described for pKM300. PiP was amplified from pMF150 using oligos oKM406 (5'-atccagatggcgaatggcgtggcgtggcgtgCCACCATGAAATTCTGCACC-3') and oKM407 (5'-atccagatggcgaatggcgtggcgtggcgtgCCACCATGAAATTCTGCACC-3').

pMF150 | Vector encoding PiP under control of P_{hCMV} (P_{hCMV}-PiP-pA) | 4 |

pMF156 | Vector encoding PiP under control of P_{SV40} (P_{SV40}-PiP-VP16-pA) | 4 |

pMF199 | Vector encoding SEAP under control of a modified P_{Ptr} (P_{Ptr}-3-P_{hSP70min}-SEAP-pA) | 4 |

pMK052 | Vector encoding P_{Ptr}-controlled TiR1 (P_{TiR1}-TiR1-pA) | 5 |

pMZ202 | Vector encoding Fluc under control of a modified P_{Tet} (tetO₁₃-P_{hCMVmin}-Fluc-pA) | This work |

Fluc was amplified from pSW209 using oligos oMZ207 (5'-atccataggctgtggcgtggcgtggcgtgCCACCATGAAATTCTGCACC-3') and oMZ208 (5'-atccataggctgtggcgtggcgtggcgtgCCACCATGAAATTCTGCACC-3').

pMZ224 | Vector for P_{CamV35S}-controlled expression of E-VP16-NLS (P_{CamV35S}-E-VP16-NLS-pA) | E-VP16-NLS was amplified from pWW035 using oligos oMZ209 (5'-atccataggctgtggcgtggcgtggcgtgCCACCATGAAATTCTGCACC-3').

This work
gtgtaaacgccgtcgctgtgcgtttcctctctctttttgtccacccgctagcaaac-3') and oMZ827 (5'-
tgaacgccgtcgctgtgcgtttcctctctctttttgtccacccgctagcaaac-3'), while the backbone of
pSW209 was amplified using oligos oMZ873 (5'-gcaacggctagcacgacgtgacggtggtcagcgagtttc-3')
and oMZ874 (5'-gtgaacgccgtcgctgtgcgtttcctctctctttttgtccacccgctagcaaac-3'), while the
backbone of pSW209 was amplified using oligos oMZ873 and oMZ874. Finally, both fragments
were fused by Gibson cloning.

pMZ827 Vector encoding P\textsubscript{CAMV35S}-controlled nuclear-targeted E-PIF6 (1-100) (P\textsubscript{CAMV35S-E-PIF6(1-100)-NLS-pA})
E-PIF6 was amplified from pKM300 using oligos oMZ895 (5'-
tgaacgacgcatatgacaacaATGCCCCGCCCCAAGCTCAAG-3') and oMZ8127 (5'-
tcaacgtctgtgctagccgttgcctacaccttcctcttcttctttggGTCAACATGTTTATTGCTTTCCAACATGTTTG-

pMZ828 Vector encoding P\textsubscript{CAMV35S}-controlled nuclear-targeted E-PIF6 (1-100) (P\textsubscript{CAMV35S-E-PIF6(1-100)-NLS-pA})
E-PIF6 was amplified from pKM300 using oligos oMZ895 (5'-
tgaacgacgcatatgacaacaATGCCCCGCCCCAAGCTCAAG-3') and oMZ8127 (5'-
tcaacgtctgtgctagccgttgcctacaccttcctcttcttctttggGTCAACATGTTTATTGCTTTCCAACATGTTTG-

pMZ828 Vector encoding P\textsubscript{CAMV35S}-controlled nuclear-targeted PhyB (1-650)-VP16 (P\textsubscript{CAMV35S-PhyB(1-650)-VP16-NLS-pA})
PhyB-VP16-NLS was amplified from pKM300 using oligos oMZ856 (5'-
gccatggtgagcacgGTCGACTCTAGATCACACCTTCCG-3') and oMZ8123 (5'-
tcaacgtctgtgctagccgttgcctacaccttcctcttcttctttggCCCACCGTACTCGTCAATTCCAAG-3'), while the
backbone of pSW209 was amplified using oligos oMZ873 and oMZ874. Finally, both fragments
were fused by Gibson cloning.

pMZ833 Vector for P\textsubscript{CAMV35S}-controlled expression of TetR-VP16-NLS (P\textsubscript{CAMV35S-TetR-VP16-NLS-pA})
Tet-VP16 was amplified from pSAM200 using oligos oMZ891 (5'-
tgaacgacgcatatgacaacaCGGCCGCCACCATGTCTAGATTAG-3') and oMZ8123 (5'-
tcaacgtctgtgctagccgttgcctacaccttcctcttcttctttggCCCACCGTACTCGTCAATTCCAAG-

pMZ836 Vector encoding FLuc under control of a modified PETR (etr8-PhCMVmin-FLuc-pA)
FLuc was amplified from pSW209 using oligos oMZ807 and oMZ808, while the backbone of pKM081 was
amplified using oligos oMZ809 (5'-gtgtaaacccgtccatggcgtCGTGGTCCCCGCGTTGCTTC-3') and oMZ810 (5'-
cgccagcgcagccaattgagcGGAAGCTGACTCTAGAGGATCCCC-3'). Finally, both fragments were fused by
Gibson cloning.

pMZ837 Vector encoding P\textsubscript{CAMV35S}-driven expression of miRNA\textsubscript{TIR1} (P\textsubscript{CAMV35S-miRNA\textsubscript{TIR1}-pA})
For the design of an miRNA targeting N. tabacum TIR1 the online tool CentroidFold6 was used and miRNA
cloning was performed by a modification of a previously described protocol.7 First, the 5'-stem sequence
was amplified from pRS300 using oligos oMZ880 (5'-
tgaacgacgcatatgacaacaGAGGTCGACGGTATCGATAAGCTTG-3') and oMZ8163 (5'-
cggtagacaaattggatcattgattctctttggtggtcaactgactggattgtCTCTCTCTTTTGTATTCCAATTTTCTT-

pMZ839 Vector encoding miRNA\textsubscript{TIR1} under control of a modified \textsubscript{P}\textsubscript{ETR} (\textsubscript{P}\textsubscript{etra-P\textsubscript{CAMV35S-miRNA\textsubscript{TIR1}-pA})
miRNA\textsubscript{TIR1} was amplified from pmZ837 using oligos oMZ8118 (5'-
gccacgcggtgctgtgctggcggCCACCTGAACGACGCATATGACAAC-3') and oMZ8119 (5'-
cagctagctagtacctacatgccatctatgcgaattgattgtCCATCTATATATATCTTAAACATCAA-3'). Next,
both PCR-products were extended by overlapping loop sequences by amplification with oMZ880 and
oMZ882 (5'-
cgagtctagtttgaattttggcgactcggtatttggatgaatgagtcgGAAGCTAATTGAATCATATCACGACCTGTGAG-

pMZ841 Vector encoding TIR1 under control of a modified \textsubscript{P}\textsubscript{ETR} (\textsubscript{P}\textsubscript{etra-P\textsubscript{CAMV35S-miRNA\textsubscript{TIR1}-pA})
TIR1 was excised (EcoRI/XbaI) from pMK052 and ligated (EcoRI/SpeI) into pKM081.

pSW209 Vector encoding firefly luciferase and renilla luciferase separated by a 2A-peptide under control of
P\textsubscript{CAMV35S} (P\textsubscript{CAMV35S-FLuc-p2A-RLuc-pA}).

pWW035 Vector encoding P\textsubscript{SV40}-driven expression of E-VP16 (P\textsubscript{SV40-E-VP16-pA})

pWW043 Vector encoding P\textsubscript{SV40}-driven expression of E-KRAB (P\textsubscript{SV40-E-KRAB-pA})
E, macrolide-responsive repressor protein; etr, operator sequence binding E; FLuc, firefly luciferase; HA, human influenza hemagglutinin-derived epitope tag; IRES_{PV}, polioviral internal ribosome entry site; KRAB, transcriptional repressor domain from human Kox1; NLS, nuclear localization signal from simian virus 40 large T antigen; pA, polyadenylation signal; p2A; foot-and-mouth disease virus-derived self-processing 2A peptide; P_{CaMV35S}, cauliflower mosaic virus 35S promoter; PiP, pristinamycin-induced protein, P_{hCMV}, human cytomegalovirus immediate early promoter; P_{hCMVmin}, minimal human cytomegalovirus immediate early promoter; P_{HSP70min}, minimal heat-shock protein 70 promoter from Drosophila; PhyB, Phytochrome B; PhyB(1-650), N-terminus of Phytochrome B with amino acids 1-650; PIF6, Phytochrome-interacting-factor 6; PIF6(1-100), N-terminus of Phytochrome-interacting-factor 6 with amino acids 1-100; P_{SV40}, simian virus 40 early promoter; PIR, operator sequence binding PiP; P_{Tet}, tetracycline-responsive promoter; RLuc, renilla luciferase; SEAP, human placental secreted alkaline phosphatase; SM, auxin sensor module; tetO, operator sequence binding TetR; TetR, tetracycline repressor protein; TIR1, auxin receptor transport inhibitor response 1; VEGF₁₂₁, 121 amino acids splice variant of human vascular endothelial growth factor; VP16, <i>Herpes simplex</i> virus-derived transactivation domain.

Uppercase in oligos, annealing sequence; underlined sequence, restriction site.
Supplementary Figure 1

Effect of clarithromycin on constitutive gene expression in *N. tabacum*. 125,000 protoplasts were transformed for constitutive firefly luciferase expression. After incubation for 24 h in the absence (-AB) or presence of 100 µg ml⁻¹ clarithromycin, the firefly luciferase luminescence was quantified. Data are means ± SEM (n=12).
Supplementary Figure 2

Spectrum of the white light source. The light spectrum between 300 nm and 800 nm was recorded using an Avaspec-ULS2048 spectroradiometer (Avatec).

