Electronic supplementary Information

N-(5-Substituted Thiazol-2-yl)-2-aryl-3-(tetrahydro-2H-pyran-4-yl) Propanamides as Glucokinase Activators

Zhiqing Liu,†,‡ Qingzhang Zhu,†,‡ Fuying Li,†,§ Lina Zhang‡, Ying Leng,†,* Ao Zhang†,*

†Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, ‡State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.

Contents

1. General Methods ..2-3

2. Preparative Procedure and Spectral Data ..3-16
1. General Methods.

1.1 Chemistry. 1H NMR spectral data were recorded in CDCl$_3$ on Varian Mercury 300 NMR spectrometer and 13C NMR data were recorded in CDCl$_3$ on Varian Mercury 400 NMR spectrometer. Low-resolution mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded at an ionizing voltage of 70 eV on a Finnigan/MAT95 spectrometer. Elemental analyses were performed on a CE 1106 elemental analyzer. Optical rotations were determined with a JASCO DCP-1000 digital polarimeter and were the average of 3 measurements. Column chromatography was carried out on silica gel (200–300 mesh). All reactions were monitored using thin-layer chromatography (TLC) on silica gel plates. Yields were of purified compounds and were not optimized.

1.2 Biological assay.

1.2.1 Preparation of recombinant glucokinase protein: cDNA of human glucokinase (MGC: 1742, purchased from Ori-Gene Technologies, USA) was subcloned into the pET28a (+) expression vector, and expressed in Escherichia coli strain BL21 (DE3). The NH$_2$ terminal end of (His)$_6$-tag glucokinase fusion protein was purified by Ni-NTA metal chelate affinity chromatography and stored at -80 °C in 50 mM Tris-HCl pH7.4, 1 mM dithiothreitol (DTT), 50 mM NaCl and 10% glycerol.

1.2.2 Glucokinase enzymatic assay: The GK activity was assessed spectrometrically by a coupled reaction with glucose-6-phosphate dehydrogenase (G6PDH).25,26 Briefly, GK catalyzes glucose phosphorylation to generate glucose-6-P, which was oxidized by the G6PDH with the concomitant reduction of NADPH. The product NADPH was then
monitored by the increase rate of absorbance at 340 nm in a plate reader (Spectra-Max 190; Molecular Devices, USA). All compounds were prepared in DMSO. The assay was performed in 96-well plates in a final volume of 100 µL containing 50 mM HEPES pH 7.4, 5 mM glucose, 25 mM KCl, 2 mM MgCl₂, 1 mM DTT, 1 mM ATP, 1 mM NADP, 2.5 U/mL G6PDH, 0.5 µg (His)_6-glucokinase and test compounds. The velocities of the enzyme reaction were expressed as mOD/min, and the fold activation of the enzyme was achieved by comparing with control (GK activation with only DMSO was considered as 100%). For EC₅₀ determination, six different concentrations of compounds were tested in the assay, and the fold changes in activity versus controls were fitted to sigmoidal curve using a fourparameter logistic model in GraphPad Prism 4.

2. Preparative Procedure and Spectral Data

2.1 Preparation of C-5 aminoacid substituted aminothiazoles 5A-C.

To a solution of 2-((tert-butoxycarbonylamino)thiazole-5-carboxylic acid (4, 0.6 mmol) in CH₂Cl₂ (8 mL) pre-cooled in ice-bath was added dropwise a catalytic amount of DMF and a solution of (COCl)₂ (62 µL, 0.72 mmol) in CH₂CH₂ (2 mL). The mixture was warmed to rt, stirred for 2h and then re-cooled to 0°C before addition of corresponding amino acid methyl ester hydrochloride (0.72 mmol) and Et₃N (1.8 mmol). The stirring was continued for 10h at rt and the solvent was evaporated. The residue was treated with EtOAc, washed successively with 1M HCl, water, saturated NaHCO₃ and brine, and then dried over Na₂SO₄. After filtration and evaporation, corresponding amides 5A-C were obtained as yellow solid and used directly for next step.
Methyl 3-(2-(tert-butoxycarbonylamino)thiazole-5-carboxamido)propanoate (5A): light yellow solid, 58.6%; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.80 (s, 1H), 6.55 (t, \(J = 2.4\) Hz, 1H), 3.70 (s, 3H), 3.68 (q, \(J = 6.0\) Hz, 2H), 2.63 (t, \(J = 6.0\) Hz, 2H), 1.59 (s, 9H).

(S)-Methyl 2-(2-(tert-butoxycarbonylamino)thiazole-5-carboxamido)-3-methyl butanoate (5B): white solid (quant.); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 12.38 (br s, 1H), 7.88 (s, 1H), 6.27 (d, \(J = 8.4\) Hz, 1H), 4.70 (m, 1H), 3.75 (s, 3H), 2.22 (m, 1H), 1.58 (s, 9H), 0.95 (m, 6H).

(S)-Methyl 2-(2-(tert-butoxycarbonylamino)thiazole-5-carboxamido)-4-methyl pentanoate (5C): light yellow solid, yield 95.7%; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.86 (s, 1H), 6.26 (d, \(J = 7.8\) Hz, 1H), 4.77 (m, 1H), 3.74 (s, 3H), 1.68 (m, 1H), 1.62 (d, \(J = 9.3\) Hz, 1H), 1.57 (s, 9H), 0.94 (m, 6H).

2.2 Preparation of C-5 aminoacid substituted aminothiazoles 6A-C.

To a solution of amides 5A-C prepared above in CH\(_2\)Cl\(_2\) (10 mL) pre-cooled in ice-bath was added dropwise a solution of TFA (2 mL) and the mixture was stirred at rt overnight. The reaction mixture was evaporated to dryness. The residue was treated with EtOAc, washed consecutively with saturated NaHCO\(_3\), water and brine, and dried over Na\(_2\)SO\(_4\). After filtration and evaporation, corresponding aminothiazoles 6A-C were obtained as light yellow solid and used directly for next step.

Methyl 3-(2-aminothiazole-5-carboxamido)propanoate (6A): light yellow solid (70.0%); \(^1\)H NMR (CDCl\(_3\)+CD\(_3\)OD, 300 MHz) \(\delta\) 7.54 (s, 1H), 3.71 (s, 3H), 3.59 (t, \(J = 8.4\) Hz, 2H), 2.64 (t, \(J = 8.4\) Hz, 2H).

(S)-Methyl 2-(2-aminothiazole-5-carboxamido)-3-methylbutanoate (6B): light yellow solid (60.4%); \(^1\)H NMR (CDCl\(_3\)+CD\(_3\)OD, 300 MHz) \(\delta\) 7.81 (s, 1H), 7.08 (d, \(J = 8.1\) Hz, 1H),
4.58 (m, 1H), 3.76 (s, 3H), 2.20 (m, 1H), 0.98 (m, 6H).

\[(S)-\text{Methyl 2-(2-aminothiazole-5-carboxamido)-4-methylpentanoate (6C): light yellow solid (70.6%); 1H NMR (CDCl}_3+CD_3OD, 300 MHz) \delta 7.57 (s, 1H), 4.70 (m, 1H), 3.75 (s, 3H), 1.68 (m, 3H), 0.97 (m, 6H).}\]

2.3 General Procedure for the synthesis of 7a, 7c, 7e by condensation of acid 3 with an appropriate aminothiazole. To a solution of arylpropanoic acid 3 (85 mg, 0.25 mmol) and an appropriate aminothiazole (0.25 mmol) in CH\(_2\)Cl\(_2\) (5 mL) cooled in ice-bath was added TBTU (0.5 mmol) and Et\(_3\)N or DIPEA (1.25 mmol). The reaction mixture was stirred at rt overnight, evaporated to dryness, and then treated with EtOAc (10 mL) and 0.1 M HCl (5 mL). The aqueous layer was extracted with EtOAc (2 \times 10 mL). The combined extracts were washed consecutively with sat. NaHCO\(_3\) and brine, and dried over anhydrous Na\(_2\)SO\(_4\). After filtration and evaporation, the residue was purified by chromatography (CHCl\(_3\) : MeOH = 50:1 to 30:1) to give corresponding amides as white or yellow solid.

Hydrolysis of compounds 7a, 7c and 7e. To a solution of an aminoacid ester 7a, 7c or 7e (0.06 mmol) in THF/H\(_2\)O (4 mL, 3:1) was added LiOH·H\(_2\)O (13 mg, 0.314 mmol) and the resulting mixture was stirred at rt for 18h. The solvent was evaporated and the residue was treated with EtOAc (5 mL) and acidified with 2M HCl to pH = 1. The aqueous layer was extracted with EtOAc and the combined extracts were washed with brine and dried over anhydrous Na\(_2\)SO\(_4\). After filtration and evaporation, the crude product was purified by column chromatography (CHCl\(_3\) : MeOH : AcOH = 10:1:0.1) to give acids 7b, 7d and 7f as white solid.

Methyl 3-(2-(2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propan
amido)thiazole-5-carboxamido)propanoate (7a): white foam, yield 50.0%; ¹H NMR (CDCl₃, 300 MHz) δ 11.2 (br s, 1H), 7.86 (s, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 6.92 (t, J = 5.7 Hz, 1H), 4.04 (t, J = 7.2 Hz, 1H), 3.87 (d, J = 10.5 Hz, 2H), 3.67 (m, 5H), 3.25 (t, J = 11.4 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 2.47 (m, 1H), 2.20 (m, 1H), 1.78 (m, 1H), 1.59 (d, J = 12.0 Hz, 2H), 1.34 (m, 5H), 1.01 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 173.3, 170.4, 161.0, 160.2, 144.0, 140.1, 139.6, 128.8, 128.4, 127.6, 67.6, 52.0, 49.3, 40.4, 35.2, 33.5, 32.8, 32.5, 6.1; EI-MS m/z 549 (M⁺); HRMS cacl. for (C₂₅H₃₁N₃O₇S₂Na): 572.1501; found: 572.1491.

3-(2-(2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)-propanamido)thiazole-5-carboxamido)propanoic acid (7b): white foam (quant.); ¹H NMR (CDCl₃+CD₃OD, 300 MHz) δ 7.77 (s, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 7.8 Hz, 2H), 3.9 (t, J = 7.2 Hz, 1H), 3.80 (d, J = 10.8 Hz, 2H), 3.50 (t, J = 6.0 Hz, 2H), 3.20 (t, J = 12.0 Hz, 2H), 2.49 (t, J = 5.4 Hz, 2H), 2.39 (m, 1H), 2.08 (m, 1H), 1.71 (m, 1H), 1.53 (d, J = 12.0 Hz, 2H), 1.23 (m, 5H), 0.94 (m, 2H); ¹³C NMR (CDCl₃+CD₃OD, 100 MHz) δ 175.1, 170.9, 161.6, 160.8, 144.4, 139.3, 139.2, 128.7, 127.8, 127.2, 67.4, 48.7, 40.1, 35.2, 33.7, 32.5, 32.4, 32.3, 32.2, 5.8, 5.7; MALDI-MS m/z 536 (M⁺). Anal. calcd. for (C₂₄H₂₉N₃O₇S₂·0.5H₂O): C 52.93, N 7.72, H 5.55; Found: C 52.75, N 7.49, H 5.49.

(2S)-Methyl 2-(2-(2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)-propanamido)thiazole-5-carboxamido)-3-methylbutanoate (7c): white foam (60.5%); ¹H NMR (300 MHz, CDCl₃) δ 11.0 (br s, 1H), 7.94 (d, J = 2.7 Hz, 1H), 7.85 (dd, J = 8.1, 2.7 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.0 (s, 1H, br), 4.04 (m, 1H), 3.89 (d, J = 11.1 Hz, 2H), 3.75 (s, 3H), 3.27 (t, J = 11.7 Hz, 2H), 2.48 (m, 1H), 2.22 (m, 2H), 1.80 (m, 1H), 1.60 (d, J = 11.7 Hz, 2H),
2H), 1.36 (m, 5H), 0.98 (m, 8H); 13C NMR (CDCl$_3$, 100 MHz) δ 173.0, 170.8, 170.7, 161.3, 160.6, 144.2, 144.1, 140.2, 140.0, 128.8, 128.33, 128.29, 126.9, 67.6, 57.6, 52.4, 49.2, 49.1, 40.5, 40.3, 32.8, 32.6, 31.4, 19.0, 18.0, 6.0; EI-MS m/z 577 (M^+). Anal. calcd. for (C$_{27}$H$_{35}$N$_3$O$_7$S$_2$·0.3H$_2$O): C 55.61, N 7.21, H 6.15; Found: C 55.41, N 7.06, H 6.18.

(2S)-2-(2-(2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazole-5-carboxamido)-3-methylbutanoic acid (7d): white foam (91.7%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.87 (s, 1H), 7.76 (d, $J = 8.1$ Hz, 2H), 7.52 (d, $J = 8.1$ Hz, 2H), 4.49 (s, 1H), 3.90 (t, $J = 7.8$ Hz, 1H), 3.84 (d, $J = 10.8$ Hz, 2H), 3.23 (t, $J = 10.8$ Hz, 2H), 2.39 (m, 1H), 2.11 (m, 2H), 1.73 (m, 1H), 1.55 (d, $J = 12.3$ Hz, 2H), 1.25 (m, 5H), 0.97 (d, $J = 7.5$ Hz, 2H), 0.90 (t, $J = 6.0$ Hz, 6H); MALDI-MS m/z 563.9 (M^+). HRMS cacld. for (C$_{26}$H$_{34}$N$_3$O$_7$S$_2$): 564.1838; found: 564.1852.

(2S)-Methyl 2-(2-(2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazole-5-carboxamido)-4-methylpentanoate (7e): white foam (67.6%); 1H NMR (300 MHz, CDCl$_3$) δ 11.0 (brs, 1H), 7.88 (d, $J = 4.2$ Hz, 1H), 7.83 (d, $J = 8.4$, 1H, 3.6 Hz, 2H), 7.53 (d, $J = 8.4$, 3.6 Hz, 2H), 7.12 (s, 1H, br), 4.83 (m, 1H), 4.02 (m, 1H), 3.88 (d, $J = 10.8$ Hz, 2H), 3.71 (s, 3H), 3.26 (m, 2H), 2.48 (m, 1H), 2.20 (m, 1H), 1.78 (m, 1H), 1.63 (m, 5H), 1.31 (m, 5H), 1.00 (m, 2H), 0.92 (d, $J = 5.4$ Hz, 6H); 13C NMR (CDCl$_3$, 100 MHz) δ 174.24, 174.16, 161.3, 161.2, 160.7, 144.3, 144.2, 140.1, 139.9, 128.8, 128.2, 126.9, 67.6, 52.5, 51.2, 49.1, 49.0, 41.2, 40.2, 32.8, 32.6, 25.0, 22.8, 21.8, 6.0; EI-MS m/z 591 (M^+). Anal. calcd. for (C$_{28}$H$_{37}$N$_3$O$_7$S$_2$·0.5H$_2$O): C 55.98, N 6.99, H 6.38; Found: C 55.85, N 6.97, H 6.27.

(2S)-2-(2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)-
propanamido)thiazole-5-carboxamido)-4-methylpentanoic acid (7f): white foam (95.1%);

1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.87 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 4.53 (m, 1H), 3.90 (t, J = 7.8 Hz, 1H), 3.83 (d, J = 10.8 Hz, 2H), 3.24 (t, J = 13.2 Hz, 2H), 2.39 (m, 1H), 2.10 (m, 1H), 1.73 (m, 1H), 1.57 (m, 5H), 1.24 (m, 5H), 0.97 (d, J = 7.5 Hz, 2H), 0.88 (d, J = 2.7 Hz, 6H); MALDI-MS m/z 578 (MH$^+$). HRMS cacld. for (C$_{27}$H$_{35}$N$_3$NaO$_7$S$_2$): 600.1814; found: 600.1821.

2.4 General procedure for preparation of thiazole-triazoles 9a-c.

To a solution of tert-butyl 5-ethynylthiazol-2-yl carbamate (0.31 mmol) and an appropriate azidoalkylester compound (0.62 mmol) in THF (5 mL) was added CuI (0.156 mmol), sodium L-ascorbate (0.31 mmol) and DIPEA (6.25 mmol). The mixture was stirred at rt for 1h. After the solvent was evaporated, the residue was purified by chromatography (CHCl$_3$: MeOH = 20:1) to give corresponding aminothiazole-triazoles 9a-c as yellow oil.

Ethyl 4-(4-(2-(tert-butoxycarbonylamino)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)butanoate (9a): white solid (81.2%); 1H NMR (300 MHz, CDCl$_3$) δ 11.75 (br s, 1H), 7.73 (s, 1H), 7.60 (s, 1H), 4.47 (t, J = 6.6 Hz, 2H), 4.14 (q, J = 6.9 Hz, 2H), 2.38 (t, J = 6.0 Hz, 2H), 2.26 (m, 2H), 1.60 (s, 9H), 1.26 (t, J = 7.5 Hz, 3H).

Ethyl 3-(4-(2-(tert-butoxycarbonylamino)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)propanoate (9b): white solid (91.0%); 1H NMR (300 MHz, CDCl$_3$) δ 7.71 (s, 2H), 4.67 (t, J = 6.3 Hz), 4.15 (q, J = 7.2 Hz, 2H), 2.97 (t, J = 6.3 Hz, 2H), 1.59 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H).

Ethyl 2-(4-(2-(tert-butoxycarbonylamino)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)acetate (9c): white solid (91.0%); 1H NMR (300 MHz, CDCl$_3$) δ 7.74 (s, 2H), 5.19 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 1.60 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H).
2.5 Preparation of triazoles 10a, 10b, 10d. These compounds were prepared by using a general condensation procedure similar to that for preparation of compounds 7a-f. Compounds 10c was prepared by hydrolysis of 10b using a procedure similar to that for synthesis of 7b.

Ethyl 4-(4-(2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)butanoate (10a): yellow solid (31.1%, purified by preparative TLC with EtOAc/1%MeOH/0.5%HOAc as the eluent); ¹H NMR (300 MHz, CDCl₃) δ 11.46 (br s, 1H), 7.82 (m, 2H), 7.72 (m, 2H), 7.53 (m, 2H), 4.49 (t, J = 6.9 Hz, 2H), 4.13 (q, J = 7.5 Hz, 2H), 3.98 (t, J = 7.8 Hz, 1H), 3.88 (d, J = 9.0 Hz, 2H), 3.26 (t, J = 11.4 Hz, 2H), 2.45 (m, 1H), 2.38 (t, J = 6.6 Hz, 3H), 2.26 (m, 3H), 1.80 (m, 1H), 1.60 (m, 2H), 1.27 (m, 8H), 1.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 170.4, 158.2, 144.4, 139.8, 139.5, 133.4, 128.7, 128.1, 122.4, 120.0, 67.6, 60.8, 49.4, 49.2, 40.6, 32.7, 32.6, 30.6, 25.4, 14.1, 6.0; EI-MS m/z 601 (M⁺). Anal. calcd. for (C₂₈H₃₅N₅O₆S₂·0.3HOAc): C 55.43, N 11.30, H 5.89; Found: C 55.79, N 10.93, H 6.16.

Ethyl 3-(4-(2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)propanoate (10b): yellow solid (68.5%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent); ¹H NMR (300 MHz, CDCl₃) δ 11.46 (br s, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.81 (s, 1H), 7.74 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 4.70 (t, J = 6.3 Hz, 2H), 4.15 (q, J = 7.5 Hz, 2H), 3.96 (t, J = 7.5 Hz, 1H), 3.87 (d, J = 4.8 Hz, 2H), 3.26 (t, J = 11.7 Hz, 2H), 2.99 (t, J = 6.3 Hz, 2H), 2.46 (m, 1H), 2.22 (m, 1H), 1.81 (m, 1H), 1.69 (d, J = 11.7 Hz, 2H), 1.34 (m, 8H), 1.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.4, 158.2, 144.3, 139.9, 139.3, 133.4, 128.7, 128.2, 122.4, 121.0, 67.6,
3-(4-(2-(2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)propanoic acid (10c): white solid (93.5%); 1H NMR (300 MHz, CDCl\textsubscript{3}+CD\textsubscript{3}OD) \(\delta\) 7.76 (s, 1H), 7.66 (d, \(J = 8.1\) Hz, 1H), 7.49 (s, 1H), 7.44 (d, \(J = 8.1\) Hz, 2H), 4.48 (t, \(J = 6.0\) Hz, 2H), 3.82 (t, \(J = 7.5\) Hz, 1H), 3.73 (d, \(J = 9.3\) Hz, 2H), 3.14 (t, \(J = 9.6\) Hz, 2H), 2.78 (t, \(J = 6.0\) Hz, 2H), 2.31 (m, 1H), 2.01 (m, 1H), 1.62 (m, 1H), 1.47 (d, \(J = 12.0\) Hz, 2H), 1.17 (m, 5H), 0.88 (m, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}+CD\textsubscript{3}OD) \(\delta\) 170.6, 157.6, 144.7, 139.2, 133.9, 128.6, 127.6, 121.4, 120.9, 67.3, 47.6, 45.7, 40.1, 34.0, 32.4, 32.2, 5.4; ESI-MS \(m/z\) 560 (MH+). Anal. calcd. for (C\textsubscript{25}H\textsubscript{29}N\textsubscript{5}O\textsubscript{6}S\textsubscript{2}·2H\textsubscript{2}O): C 50.41, N 11.76, H 5.58; Found: C 50.74, N 11.45, H 5.27.

Ethyl 2-(4-(2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamido)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)acetate (10d): yellow solid (47.7%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent); 1H NMR (300 MHz, CDCl\textsubscript{3}) \(\delta\) 11.47 (brs, 1H), 7.84 (s, 1H), 7.83 (d, \(J = 8.4\) Hz, 2H), 7.73 (s, 1H), 7.53 (d, \(J = 8.4\) Hz, 2H), 5.24 (s, 2H), 4.28 (q, \(J = 6.9\) Hz, 2H), 3.97 (t, \(J = 7.2\) Hz, 1H), 3.88 (d, \(J = 11.1\) Hz, 2H), 3.26 (t, \(J = 11.7\) Hz, 2H), 2.46 (m, 1H), 2.22 (m, 1H), 1.81 (m, 1H), 1.60 (t, \(J = 12.0\) Hz, 2H), 1.36 (m, 8H), 1.01 (m, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 170.5, 166.1, 157.9, 144.5, 139.9, 139.6, 134.0, 128.8, 128.0, 121.6, 121.2, 67.6, 62.5, 50.9, 40.4, 32.71, 32.67, 32.5, 13.9, 5.92, 5.88; EI-MS \(m/z\) 573 (M+). Anal. calcd. for (C\textsubscript{26}H\textsubscript{31}N\textsubscript{5}O\textsubscript{6}S\textsubscript{2}·0.4HOAc): C 53.85, N 11.72, H 5.50; Found: C 54.21, N 11.50, H 5.59.

2.6 General procedure for preparation of thiazole-triazoles 11a-g.
2-(4-(2-(tert-Butoxycarbonylamino)thiazol-5-yl)-1H-1,2,3-triazol-1-yl)acetic acid (obtained from hydrolysis of ester 9c in 79.2% yield) was converted to amides 11a-g following a similar procedure as that for preparation of compounds 7a-f.

tert-Butyl 5-(1-(2-(methylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11a): white solid (quant.); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 8.00 (s, 1H), 7.64 (s, 1H), 5.08 (s, 2H), 2.82 (d, $J = 2.1$ Hz, 3H), 1.58 (s, 9H).

tert-Butyl 5-(1-(2-(ethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11b): white solid (quant.); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.86 (s, 1H), 7.52 (s, 1H), 4.93 (s, 2H), 3.17 (m, 2H), 1.45 (s, 9H), 1.03 (t, $J = 7.2$ Hz, 3H).

tert-Butyl 5-(1-(2-(cyclopropylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11c): white solid (quant.); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.99 (s, 1H), 7.64 (s, 1H), 5.02 (s, 2H), 2.72 (m, 1H), 1.58 (s, 9H), 0.78 (m, 2H), 0.55 (m, 2H).

tert-Butyl 5-(1-(2-(dimethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11d): white solid (quant.); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.96 (s, 1H), 7.30 (s, 1H), 5.30 (s, 2H), 3.17 (s, 3H), 3.04 (s, 3H), 1.58 (s, 9H).

tert-Butyl 5-(1-(2-(diethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11e): white solid (89.5%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.82 (s, 1H), 7.53 (s, 1H), 5.17 (s, 2H), 3.32 (m, 4H), 1.46 (s, 9H), 1.17 (t, $J = 7.2$ Hz, 3H), 1.03 (t, $J = 7.2$ Hz, 3H).

tert-Butyl 5-(1-(2-(morpholino-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl carbamate (11f): white solid (93.3%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.94 (s, 1H), 7.64 (s, 1H), 5.35 (s, 2H), 3.74 (m, 4H), 3.64 (m, 4H), 1.58 (s, 9H).
** tert-Butyl 5-(1-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-ylcarbamate (11g):** white solid (95.0%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.86 (s, 1H), 7.66 (s, 1H), 5.29 (s, 2H), 3.67 (t, J = 4.8 Hz, 2H), 3.61 (t, J = 4.8 Hz, 2H), 2.47 (m, 4H), 2.34 (s, 3H), 1.58 (s, 9H).

2.7 Preparation of compounds 12a-g. These compounds were prepared by using a similar condensation procedure as that for preparation of compounds 7a-f.

2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-(methylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12a): yellow solid (39.0%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 8.03 (s, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.72 (s, NH), 7.69 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 5.10 (s, 2H), 4.03 (t, J = 7.5 Hz, 1H), 3.92 (dd, J = 11.4, 3.0 Hz, 2H), 3.33 (t, J = 11.7 Hz, 2H), 2.81 (d, J = 3.6 Hz, 3H), 2.51 (m, 1H), 2.20 (m, 1H), 1.83 (m, 1H), 1.66 (d, J = 11.4 Hz, 2H), 1.37 (m, 5H), 1.06 (m, 2H); 13C NMR (100 MHz, CDCl$_3$+CD$_3$OD) δ 170.6, 165.8, 165.7, 157.8, 144.6, 139.8, 139.3, 134.1, 128.7(2), 127.8(2), 121.7, 121.4, 67.5(2), 52.4, 48.5, 40.2, 32.6, 32.3, 26.1, 5.8; ESI-MS m/z 581 (M$^+$+Na). Anal. calcd. for (C$_{25}$H$_{30}$N$_6$O$_5$S$_2$·1.2H$_2$O): C 51.74, N 14.48, H 5.63; Found: C 51.80, N 14.13, H 5.34.

2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-(ethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12b): white solid (51.2%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent); 1H NMR (300 MHz, CDCl$_3$) δ 7.96 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.51 (s, 1H), 7.55 (d, J = 8.1 Hz, 2H), 6.84 (t, J = 5.4 Hz, 1H, NH), 5.12 (s, 2H), 4.02 (t, J = 7.5 Hz, 1H), 3.87 (d, J = 11.4 Hz, 2H), 3.28 (m, 4H), 2.48 (m, 1H), 2.16 (m, 1H), 1.80 (m, 1H), 1.60 (t, J = 10.8 Hz,
2H), 1.35 (m, 5H), 1.19 (t, J = 6.3 Hz, 2H), 1.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃+CD₃OD) δ 170.6, 165.0, 164.9, 157.8, 144.6, 139.8, 139.4, 134.0, 128.7 (2), 127.8 (2), 121.7, 121.4, 67.5 (2), 52.4, 48.5, 40.2, 34.6, 34.5, 32.6, 32.3, 14.0, 5.8; ESI-MS m/z 595 (M⁺+Na). Anal. calcd. for (C₂₆H₃₂N₆O₅S₂·0.3AcOH): C 54.08, N 14.23, H 5.66; Found: C 54.33, N 13.94, H 5.82.

N-(5-(1-(2-(Cyclopropylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12c): yellow solid (48.1%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent); ¹H NMR (300 MHz, CDCl₃+CD₃OD) δ 8.03 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.67 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 5.07 (s, 2H), 4.03 (t, J = 7.5 Hz, 1H), 3.91 (d, J = 11.1 Hz, 2H), 3.31 (t, J = 11.4 Hz, 2H), 2.72 (m, 1H), 2.50 (m, 1H), 2.20 (m, 1H), 1.83 (m, 1H), 1.64 (t, J = 11.7 Hz, 2H), 1.36 (m, 5H), 1.05 (m, 2H), 0.74 (m, 2H), 0.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃+CD₃OD) δ 170.6, 166.4, 157.7, 144.6, 139.6, 139.2, 134.0, 128.7(2), 127.7(2), 121.7, 121.4, 67.4(2), 52.1, 48.5, 40.2, 32.5, 32.3, 22.4, 17.7, 5.7; ESI-MS m/z 607 (M⁺+Na). Anal. calcd. for (C₂₇H₃₂N₆O₅S₂·0.6AcOH): C 54.56, N 13.54, H 5.59; Found: C 54.20, N 13.69, H 5.59.

2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-(dimethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12d): Off-white solid (46.2%); ¹H NMR (300 MHz, CDCl₃) δ 7.91 (s, 1H), 7.78 (d, J = 7.8 Hz, 2H), 7.58 (s, 1H), 7.51 (d, J = 8.1 Hz, 2H), 5.34 (s, 2H), 3.97 (t, J = 7.5 Hz, 1H), 3.83 (d, J = 11.1 Hz, 2H), 3.22 (t, J = 11.1 Hz, 2H), 3.10 (s, 3H), 2.96 (s, 3H), 2.45 (m, 1H), 2.24 (m, 1H), 1.77 (m, 1H), 1.56 (t, J = 10.2 Hz, 2H), 1.28 (m, 5H), 0.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃+CD₃OD)
δ 170.5, 164.8, 157.5, 144.6, 139.4, 139.2, 133.8, 128.6(2), 127.6(2), 121.9, 121.4, 67.3(2), 50.7, 48.4, 40.1, 36.2, 35.6, 32.4, 32.2, 5.6; ESI-MS m/z 595 (M^+Na). Anal. calcd. for (C_{26}H_{32}N_{6}O_{5}S_{2}): C 54.53, N 14.67, H 5.63; Found: C 54.57, N 14.38, H 5.65.

2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-(diethylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12e): yellow solid (62.9%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 8.01 (s, 1H), 7.87 (d, $J = 8.7$ Hz, 2H), 7.70 (s, 1H), 7.50 (d, $J = 8.7$ Hz, 2H), 5.36 (s, 2H), 4.06 (t, $J = 7.5$ Hz, 1H), 3.93 (d, $J = 10.8$ Hz, 2H), 3.46 (m, 4H), 3.34 (t, $J = 12.0$ Hz, 2H), 2.53 (m, 1H), 2.23 (m, 1H), 1.84 (m, 1H), 1.68 (t, $J = 12.3$ Hz, 2H), 1.34 (m, 8H), 1.16 (t, $J = 7.5$ Hz, 3H), 1.08 (m, 2H); 13C NMR (100 MHz, CDCl$_3$+CD$_3$OD) δ 170.5, 163.9, 157.5, 144.6, 139.4, 139.1, 133.9, 128.6 (2), 127.6 (2), 121.9, 121.4, 67.3 (2), 50.6, 48.3, 41.5, 40.8, 40.1, 32.4, 32.2, 13.7, 12.3, 5.6; ESI-MS m/z 623.2 (M^+Na). HRMS: m/z [M^+Na] calcd for C$_{28}$H$_{36}$N$_6$NaO$_5$S$_2$: 623.2086, found: 623.2096.

2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12f): light yellow solid (52.0%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent); 1H NMR (300 MHz, CDCl$_3$) δ 7.88 (s, 1H), 7.80 (d, $J = 8.4$ Hz, 2H), 7.61 (s, 1H), 7.52 (d, $J = 8.4$ Hz, 2H), 5.33 (s, 2H), 3.97 (t, $J = 7.5$ Hz, 1H), 3.85 (d, $J = 10.5$ Hz, 2H), 3.63 (t, $J = 4.5$ Hz, 2H), 3.57 (t, $J = 4.5$ Hz, 2H), 3.24 (t, $J = 10.8$ Hz, 2H), 2.40 (m, 5H), 2.29 (s, 3H), 2.17 (m, 1H), 1.78 (m, 1H), 1.57 (t, $J = 10.5$ Hz, 2H), 1.32 (m, 5H), 0.99 (m, 2H); 13C NMR (100 MHz, CDCl$_3$+CD$_3$OD) δ 170.6, 163.3, 157.8, 144.6, 139.7, 139.1, 133.9, 128.7(2), 127.9(2), 121.8, 121.6, 67.5(2), 54.4, 54.0, 50.7, 48.5, 45.5, 44.7, 41.8, 40.3, 32.6, 32.4, 5.81, 5.76; ESI-MS m/z 626 (M^+). Anal. calcd. for (C$_{29}$H$_{37}$N$_7$O$_5$S$_2$·AcOH): C 54.13, N 14.25, H
2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-morpholino-2-oxoethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (12g): Off-white solid (42.3%, purified by preparative TLC with EtOAc/5%MeOH/0.1%AcOH as the eluent);

1H NMR (300 MHz, CDCl$_3$) δ 7.89 (s, 1H), 7.80 (d, $J = 8.4$ Hz, 2H), 7.62 (s, 1H), 7.52 (d, $J = 8.7$ Hz, 2H), 5.34 (s, 2H), 3.96 (t, $J = 7.5$ Hz, 1H), 3.86 (d, $J = 11.1$ Hz, 2H), 3.69 (m, 4H), 3.59 (m, 4H), 3.25 (t, $J = 10.8$ Hz, 2H), 2.46 (m, 1H), 2.16 (m, 1H), 1.78 (m, 1H), 1.58 (t, $J = 9.6$ Hz, 2H), 1.31 (m, 5H), 1.01 (m, 2H);

13C NMR (100 MHz, CDCl$_3$+CD$_3$OD) δ 170.5, 163.6, 157.7, 144.6, 139.6, 139.3, 133.9, 128.7(2), 127.8(2), 121.8, 121.5, 67.4(2), 66.2, 66.0, 50.6, 48.5, 45.3, 42.3, 40.2, 32.5, 32.3, 5.7. ESI-MS m/z 615 (MH$^+$). Anal. calcd. for (C$_{28}$H$_{34}$N$_6$O$_6$S$_2$·0.8H$_2$O): C 53.45, N 13.36, H 5.70; Found: C 53.83, N 12.92, H 5.70.

2.8 5-(1-(2-(Benzyloxy)ethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-amine (13): This compound was prepared as yellow solid from thiazole 8 following a similar procedure as that for preparation of compounds 9a-c in 68.3% yield. 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 7.71 (s, 1H), 7.22 (m, 6H), 4.48 (m, 4H), 3.79 (m, 2H).

2.9 N-(5-(1-(2-(Benzyloxy)ethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-2-(4-(cyclo-propylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (14): This compound was prepared by using a similar condensation procedure as that for preparation of compounds 7a-f. White solid (57.5%); 1H NMR (300 MHz, CDCl$_3$+CD$_3$OD) δ 11.65 (br s, 1H), 7.81 (m, 4H), 7.57 (d, $J = 7.8$ Hz, 2H), 7.29 (m, 5H), 4.62 (t, $J = 6.3$ Hz, 2H), 4.53 (s, 2H), 4.31 (t, $J = 6.6$ Hz, 1H), 4.06 (t, $J = 6.6$ Hz, 1H), 3.88 (d, $J = 4.8$ Hz, 2H), 3.26 (t, $J = 11.7$ Hz, 2H), 2.47 (m, 1H), 2.23 (m, 1H), 1.80 (m, 1H), 1.61 (m, 2H), 1.37 (m, 5H), 1.03 (m, 2H); 13C NMR (100
16 MHz, CDCl₃) δ 170.3, 158.0, 144.2, 139.9, 139.1, 137.8, 133.2, 128.7, 128.5, 128.2, 127.9, 127.8, 122.6, 120.3, 73.1, 67.6, 65.9, 49.3, 47.6, 40.6, 32.8, 32.7, 30.3, 6.0. ESI-MS m/z 622 (M⁺).

2.10 2-(4-(Cyclopropylsulfonyl)phenyl)-N-(5-(1-(2-hydroxyethyl)-1H-1,2,3-triazol-4-yl)thiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide (15): To a solution of benzylether 14 (48 mg, 0.077 mmol) in CH₂Cl₂ (5 mL) was added N, N-dimethylaniline (0.187 g, 0.2 mL, 1.5 mmol) and AlCl₃ (0.2 g, 1.5 mmol). The mixture was stirred at rt for 5 h. The reaction was quenched by addition of 1N HCl (2 mL) and the aqueous layer was extracted with EtOAc (3 × 5 mL). The combined extracts were successively washed with saturated NaHCO₃, brine, and then dried over anhydrous Na₂SO₄. The solvent was removed and the crude product was purified by chromatography (CHCl₃ : MeOH = 50:1 to 20:1) to give the title compound 15 as white solid (21 mg, 51.2%). ¹H NMR (300 MHz, CDCl₃+CD₃OD) δ 7.84 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H), 4.45 (t, J = 5.1 Hz, 2H), 3.94 (m, 3H), 3.85 (dd, J = 12.0, 3.0 Hz, 2H), 3.25 (t, J = 12.0 Hz, 2H), 2.42 (m, 1H), 2.14 (m, 1H), 1.77 (m, 1H), 1.58 (t, J = 12.6 Hz, 2H), 1.30 (m, 5H), 0.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃+CD₃OD) δ 170.6, 157.8, 144.6, 139.5, 139.3, 133.7, 128.8(2), 128.0(2), 121.8, 121.2, 67.6(2), 60.5, 52.8, 48.7, 40.3, 32.7, 32.4, 5.92; ESI-MS m/z 554 (M⁺+Na). Anal. calcd. for (C₂₄H₂₉N₅O₅S₂·0.3H₂O): C 53.67, N 13.04, H 5.56; Found: C 53.87, N 12.65, H 5.68.