Supplementary information

4-Chlorocolchicine derivatives bearing a thiourea side chain at C-7 position as potent anticancer agents

Hiroyuki Nishiyama, a Masahiro Ono, a Takuya Sugimoto, a Toshio Sasai, a Naoyuki Asakawa, a Satoshi Ueno, a Yoshitaka Tominaga, b Takashi Yaegashi, a Masato Nagaoka, a Takeshi Matsuzaki, a Noriyuki Kogure, c Mariko Kitajima c and Hiromitsu Takayama * c

*Yakult Central Institute for Microbiological Research 1798 Yaho, Kunitachi-shi, Tokyo 186-8650, Japan
b Pharmaceutical Division, Yakult Honsha Co., Ltd. 7-16-21 Ginza, Chuo-ku, Tokyo 104-0061, Japan
c Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan.

E-mail: htakayam@p.chiba-u.ac.jp; Fax: +81 43-226-2914; Tel: +81 43-226-2914

General methods

All reagents were obtained from commercial sources and used without further purification. Optical rotation was determined using a JASCO DIP-360 digital polarimeter. 1H-NMR spectra were recorded on a JEOL ALPHA-400 using CDCl 3 or DMSO-d 6 as solvent and TMS as internal standard. Chemical shifts are reported in ppm (δ scale) and all coupling constant (J) values are in Hz. ESI-MS data were obtained using a Waters 3100 Single Quadrupole LC/MS instrument equipped with an ESI source. HR-ESI-MS data were measured on an LCT-Premier XE time-of-flight instrument (Waters Corp.).

Synthesis of 4-(hydroxymethyl)colchicine (9)

A mixture of 4-formylcolchicine (8) (100 mg, 0.23 mmol) and NaBH₄ (13 mg, 0.35 mmol) in MeOH (2.5 mL) was stirred at ambient temperature under argon atmosphere for 3 h. Acetone was added to the reaction mixture and the whole mixture was stirred for 30 min at ambient temperature. After adding water, the whole mixture extracted two times with CHCl₃. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and
concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 9 (74 mg, 0.17 mmol, 74% yield) as an off-white solid.
\[
[\alpha]_{25}^{D} = -130.84^\circ (c = 0.425, \text{MeOH}). \quad \text{H-NMR (400 MHz, DMSO-d₆): } \delta 8.55 (1H, d, J = 7.3 Hz), 7.11 (1H, s), 7.09 (1H, d, J = 10.7 Hz), 7.02 (1H, d, J = 10.7 Hz), 4.87 (1H, t, J = 5.1 Hz), 4.54 (1H, dd, J = 11.3, 4.4 Hz), 4.47 (1H, dd, J = 11.3, 5.9 Hz), 4.31-4.24 (1H, m), 3.88 (3H, s), 3.87 (3H, s), 3.83 (3H, s), 3.50 (3H, s), 3.00 (1H, dd, J = 12.6, 4.5 Hz), 2.10-1.95 (2H, m), 1.85 (3H, s), 1.81-1.73 (1H, m). \quad \text{HR-ESI-MS: calcd for C}_{23}\text{H}_{28}\text{NO}_7 [M+H]^+, 430.1866; found, 430.1858.
\]

Synthesis of 4-(fluoromethyl)colchicine (5)

To a stirred solution of 4-(hydroxymethyl)colchicine (9) (30 mg, 0.070 mmol) in CH₂Cl₂ (1 mL) was added DAST (11 µL, 0.084 mmol) at 0°C under argon atmosphere. After stirring 2 h at 0°C, the reaction mixture was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 5. (19 mg, 0.044 mmol, 63% yield) as an off-white solid.
\[
[\alpha]_{25}^{D} = -140.76^\circ (c = 0.157, \text{MeOH}). \quad \text{H-NMR (400 MHz, DMSO-d₆): } \delta 8.60 (1H, d, J = 7.3 Hz), 7.11 (1H, d, J = 10.7 Hz), 7.11 (1H, s), 7.03 (1H, d, J = 10.7 Hz), 5.49 (2H, d, J = 48.5 Hz), 4.28-4.21 (1H, m), 3.89 (3H, s), 3.88 (3H, s), 3.87 (3H, s), 3.54 (3H, s), 2.93 (1H, dd, J = 13.9, 4.6 Hz), 2.13-1.94 (2H, m), 1.86-1.77 (1H, m), 1.85 (3H, s). \quad \text{HR-ESI-MS: calcd for C}_{23}\text{H}_{27}\text{FNO}_6 [M+H]^+, 432.1822; found, 432.1826.
\]

Synthesis of 4-(1,3-dithian-2-yl)colchicine (10)

To a stirred solution of 4-formylcolchicine (8) (250 mg, 0.59 mmol) in CHCl₃ (6 mL) were added 1,3-propanedithiol (70 µL, 0.70 mmol) and iodine (15 mg, 0.059 mmol) at ambient temperature under argon atmosphere. After stirring overnight at ambient temperature, 10%Na₂SO₃ aq. and saturated NaHCO₃ aq. were added to the reaction mixture and the whole mixture was extracted two times with CHCl₃. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 10 (224 mg, 0.43 mmol, 74% yield) as an amorphous solid.
\[
[\alpha]_{25}^{D} = -94.32^\circ (c = 0.469, \text{MeOH}). \quad \text{H-NMR (400 MHz, DMSO-d₆): } \delta 8.58 (1H, d, J = 7.3 Hz), 7.08 (1H, s), 7.05 (1H, d, J = 10.7 Hz), 6.99 (1H, d, J = 10.7 Hz), 4.26-4.20 (1H, m),
\]
3.94-3.89 (1H, m), 3.88 (3H, s), 3.88 (3H, s), 3.87 (3H, s), 3.50 (3H, s), 3.1893.09 (2H, m), 2.94-2.85 (2H, m), 2.19-2.01 (3H, m), 1.88-1.80 (2H, m), 1.86 (3H, s), 1.73-1.63 (1H, m).

HR-ESI-MS: calcd for C_{26}H_{32}NO_{6}S_{2} [M+H]^+, 518.1671; found, 518.1719.

Synthesis of 4-(difluoromethyl)colchicine (6)

A solution of 4-(1,3-dithian-2-yl)colchicine (10) (50 mg, 0.097 mmol) in CH_{2}Cl_{2} was added to a mixture of NIS (87 mg, 0.39 mmol) and HF·pyridine (HF: 65%, 119 mg, 3.9 mmol) in CH_{2}Cl_{2} at -78 °C under argon atmosphere. The reaction mixture was stirred overnight and allowed to warm to ambient temperature during the course of the reaction. After adding 10% Na_{2}SO_{3}aq., the mixture was stirred for 10 min at ambient temperature followed by addition of NaHCO_{3}aq. The whole mixture was extracted with CHCl_{3}. The organic layer was washed with saturated NaHCO_{3}aq., 0.1 mol/L HCl and then brine, dried over Na_{2}SO_{4}, filtered, and concentrated in vacuo. The residue was dissolved in MeOH (2 mL). NaBH_{4} (2 mg, 0.048 mmol) was added to the solution, and the reaction mixture was stirred for 30 min at ambient temperature under argon atmosphere. The reaction was quenched with acetone followed by addition of CHCl_{3}. The whole mixture was washed with H_{2}O, dried over Na_{2}SO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl_{3}/MeOH) to afford compound 6 (30 mg, 0.067 mmol, 70% yield) as a white solid.

\[\alpha_{D}^{25} = -31.24^\circ \quad (c = 0.120, \text{MeOH}). \]

{\text{H}}NMR (400 MHz, DMSO-d_{6}): δ 8.62 (1H, d, \text{J} = 7.3 Hz), 7.25 (1H, t, \text{J} = 54.0 Hz), 7.11 (1H, d, \text{J} = 10.7 Hz), 7.10 (1H, s), 7.03 (1H, d, \text{J} = 10.7 Hz), 4.28-4.21 (1H, m), 3.90 (3H, s), 3.90 (3H, s), 3.89 (3H, s), 3.56 (3H, s), 3.11 (1H, dd, \text{J} = 13.7, 4.9 Hz), 2.17-2.08 (1H, m), 1.99-1.91 (1H, m), 1.87-1.80 (1H, m), 1.86 (3H, s).

HR-ESI-MS: calcd for C_{23}H_{26}F_{2}NO_{6} [M+H]^+, 450.1728; found, 450.1736.

Synthesis of 4-(trifluoromethyl)colchicine (7)

A mixture of 4-iodocolchicine (11) (50 mg, 0.095 mmol), CuI (9.1 mg, 0.048 mmol) and FSO_{2}CH_{2}COO \text{Me} (55 mg, 0.29 mmol) in NMP (1 mL) was stirred overnight at 120 °C under argon atmosphere in a sealed tube. Water was added to the mixture and the whole mixture was extracted two times with CHCl_{3}. The combined organic layers were washed with brine, dried over Na_{2}SO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl_{3}/MeOH) to afford compound 7 (30 mg, 0.065 mmol, 68%
yield) as an off-white solid.

\[\alpha^25_D: 95.57^\circ (c = 0.212, \text{MeOH}). \]

1H-NMR (400 MHz, DMSO-d_6): \(\delta \) 8.62 (1H, d, \(J = 7.3 \) Hz), 7.11 (1H, d, \(J = 11.1 \) Hz), 7.09 (1H, s), 7.02 (1H, d, \(J = 11.1 \) Hz), 4.29-4.23 (1H, m), 3.90 (3H, s), 3.89 (3H, s), 3.89 (3H, s), 3.57 (3H, s), 2.97 (1H, dd, \(J = 14.7, 5.3 \) Hz), 2.22-2.12 (1H, m), 1.99-1.89 (1H, m), 1.87 (3H, s), 1.86-1.77 (1H, m). HR-ESI-MS: calcd for C$_{23}$H$_{25}$F$_3$NO$_6$ [M+H]$^+$, 468.1634; found, 468.1634.

Synthesis of 4-chloro-N-(methanesulfonyl)deacetylcolchicine (13)

To a stirred solution of 4-chlorodeacetylcolchicine (12) (30 mg, 0.070 mmol) and Et$_3$N (26 µL, 0.19 mmol) in CH$_2$Cl$_2$ (2 mL) was added MeSO$_2$Cl (12 µL, 0.15 mmol) at 0 °C under argon atmosphere. After stirring 2 h at 0 °C, the reaction was quenched with water. Then, the whole mixture was extracted with CHCl$_3$. The organic layer was washed with saturated NaHCO$_3$ aq, dried over MgSO$_4$, filtered, and evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl$_3$/MeOH) to afford compound 13 (57 mg, 0.12 mmol, 95% yield) as a yellow solid.

\[\alpha^25_D: 79.11^\circ (c = 0.032, \text{MeOH}). \]

1H-NMR (400 MHz, CDCl$_3$): \(\delta \) 7.77 (1H, s), 7.31 (1H, d, \(J = 10.7 \) Hz), 6.88 (1H, d, \(J = 10.7 \) Hz), 5.52 (1H, br-s), 4.36-4.30 (1H, m), 4.03 (3H, s), 4.00 (3H, s), 3.99 (3H, s), 3.58 (3H, s), 3.27 (1H, dd, \(J = 14.1, 5.4 \) Hz), 2.89 (3H, s), 2.40-2.31 (1H, m), 2.15-2.12 (1H, m), 1.89-1.85 (1H, m). HR-ESI-MS: calcd for C$_{21}$H$_{25}$ClNO$_7$S [M+H]$^+$, 470.1040; found, 470.1058; calcd for C$_{21}$H$_{25}$ClNO$_7$S [M+H+2]$^+$, 472.1011; found, 472.1032.

Synthesis of 4-chloro-N-(ethanesulfonyl)deacetylcolchicine (14)

Compound 14 was prepared from 4-chlorodeacetylcolchicine (12) (198 mg, 0.51 mmol) and EtSO$_2$Cl (72 µL, 0.73 mmol) using the same procedure as that described for compound 13.

Yellow solid (243 mg, 0.50 mmol, 99% yield).

\[\alpha^25_D: 113.46^\circ (c = 0.189, \text{MeOH}). \]

1H-NMR (400 MHz, CDCl$_3$): \(\delta \) 7.70 (1H, s), 7.26 (1H, d, \(J = 10.7 \) Hz), 6.84 (1H, d, \(J = 11.0 \) Hz), 5.36 (1H, br-s), 4.33-4.27 (1H, m), 4.02 (3H, s), 3.99 (3H, s), 3.99 (3H, s), 3.58 (3H, s), 3.27 (1H, dd, \(J = 13.8, 5.2 \) Hz), 2.99-2.89 (2H, m), 2.36-2.31 (1H, m), 2.17-2.13 (1H, m), 1.91-1.83 (1H, m), 1.32 (3H, t, \(J = 7.4 \) Hz). HR-ESI-MS: calcd for C$_{22}$H$_{27}$ClNO$_7$S [M+H]$^+$, 484.1197; found, 484.1221; calcd for C$_{22}$H$_{27}$ClNO$_7$S [M+H+2]$^+$, 486.1167; found, 486.1211.
Synthesis of 4-chloro-\(N\)-(propane-2-sulfonyl)deacetylcolchicine (15)

Compound 15 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and \(i\)PrSO\(_2\)Cl (17 \(\mu\)L, 0.15 mmol) using the same procedure as that described for compound 13. Pale yellow solid (6 mg, 0.012 mmol, 9% yield).

\([\alpha]_{D}^{25}\) = -104.47 (c = 0.013, MeOH). \(1^H\)-NMR (400 MHz, CDCl\(_3\)):

\(\delta\) 7.65 (1H, s), 7.26-7.23 (1H, m), 6.81 (1H, d, \(J = 11.0\) Hz), 5.08 (1H, br s), 4.30-4.24 (1H, m), 4.01 (3H, s), 3.99 (3H, s), 3.97 (3H, s), 3.57 (3H, s), 3.26 (1H, dd, \(J = 13.5, 5.2\) Hz), 3.04-2.97 (1H, m), 2.38-2.33 (1H, m), 2.22-2.11 (1H, m), 1.88-1.83 (1H, m), 1.32 (3H, d, \(J = 6.8\) Hz), 1.27 (3H, d, \(J = 6.8\) Hz). HR-ESI-MS: calcd for C\(_{23}\)H\(_{29}\)ClNO\(_7\)S [M+H]\(^+\), 498.1353; found, 498.1387; calcd for C\(_{23}\)H\(_{29}\)ClNO\(_7\)S [M+H+2]\(^+\), 500.1324; found, 500.1371.

Synthesis of 4-chloro-\(N\)-(2-methylpropane-1-sulfonyl)deacetylcolchicine (16)

Compound 16 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and 2-methylpropane-1-sulfonyl chloride (12 \(\mu\)L, 0.15 mmol) using the same procedure as that described for compound 13. White solid (56 mg, 0.11 mmol, 85% yield).

\([\alpha]_{D}^{25}\) = -129.61 (c = 0.228, MeOH). \(1^H\)-NMR (400 MHz, CDCl\(_3\)):

\(\delta\) 7.70 (1H, s), 7.26 (1H, d, \(J = 10.7\) Hz), 6.84 (1H, d, \(J = 10.7\) Hz), 5.18 (1H, d, \(J = 5.1\) Hz), 4.33-4.27 (1H, m), 4.02 (3H, s), 3.99 (3H, s), 3.99 (3H, s), 3.57 (3H, s), 3.26 (1H, dd, \(J = 14.0, 5.0\) Hz), 2.88 (1H, dd, \(J = 14.0, 6.0\) Hz), 2.74 (1H, dd, \(J = 14.0, 7.0\) Hz), 2.38-2.29 (1H, m), 2.25-2.10 (2H, m), 1.88-1.82 (1H, m), 1.03 (3H, d, \(J = 6.8\) Hz), 1.00 (3H, d, \(J = 6.8\) Hz). HR-ESI-MS: calcd for C\(_{24}\)H\(_{31}\)ClNO\(_7\)S [M+H]\(^+\), 512.1510: found, 512.1517; calcd for C\(_{24}\)H\(_{31}\)ClNO\(_7\)S [M+H+2]\(^+\), 514.1480: found, 514.1517.

Synthesis of \(N\)benzenesulfonyl-4-chlorodeacetylcolchicine (17)

Compound 17 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and PhSO\(_2\)Cl (20 \(\mu\)L, 0.15 mmol) using the same procedure as that described for compound 13. White solid (30 mg, 0.056 mmol, 44% yield).

\([\alpha]_{D}^{25}\) = -179.37 (c = 0.134, MeOH). \(1^H\)-NMR (400 MHz, CDCl\(_3\)):

\(\delta\) 7.65-7.63 (2H, m), 7.47 (1H, t, \(J = 7.4\) Hz), 7.37 (2H, t, \(J = 7.6\) Hz), 7.28 (1H, s), 7.17 (1H, d, \(J = 10.5\) Hz), 6.72 (1H, d, \(J = 11.0\) Hz), 5.41 (1H, d, \(J = 7.8\) Hz), 4.16-4.10 (1H, m), 4.00 (3H, s), 3.99 (3H, s), 3.97 (3H, s), 3.62 (3H, s), 3.17 (1H, dd, \(J = 13.2, 4.6\) Hz),
2.18-2.03 (2H, m), 1.74-1.71 (1H, m). HR-ESI-MS: calcd for C_{26}H_{27}ClNO_7S [M+H]^+, 532.1197; found, 532.1132; calcd for C_{26}H_{27}^{37}ClNO_7S [M+H+2]^+, 534.1167; found, 534.1107.

Synthesis of 4-chloro-N(ethylcarbamoyl)deacetylcolchicine (18)

A solution of 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and ethyl isocyanate (20 µl, 0.26 mmol) in MeOH·H_2O (2:1, 1.5 mL) was stirred for 90 min at 0 °C. The reaction mixture was extracted two times with CHCl_3. The combined organic layers were washed with brine, dried over MgSO_4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl_3/MeOH) to afford compound 18 (36 mg, 0.078 mmol, 61% yield) as a pale yellow solid.

[α]_D^{25} = +45.84° (c = 0.094, MeOH). ^1H-NMR (400 MHz, CDCl_3): δ 7.79 (1H, s), 7.36 (1H, d, J = 10.6 Hz), 6.92 (1H, d, J = 10.6 Hz), 6.67 (1H, br-s), 4.54-4.49 (1H, m), 4.03 (3H, s), 4.06 (3H, s), 3.99 (3H, s), 3.97 (3H, s), 3.63 (3H, s), 3.24-3.15 (2H, m), 3.10-3.06 (1H, m), 2.30-2.27 (1H, m), 2.14-2.07 (1H, m), 1.72-1.65 (1H, m), 1.04 (3H, t, J = 7.2 Hz). HR-ESI-MS: calcd for C_{23}H_{28}^{35}ClN_2O_6 [M+H]^+, 463.1636; found, 463.1666; calcd for C_{23}H_{28}^{37}ClN_2O_6 [M+H+2]^+, 465.1606; found, 465.1636.

Synthesis of 4-chloro-N(isopropylcarbamoyl)deacetylcolchicine (19)

Compound 19 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and isopropyl isocyanate (25 µL, 0.26 mmol) using the same procedure as that described for compound 18. Amorphous solid (59 mg, 0.12 mmol, 97% yield).

[α]_D^{25} = -72.78° (c = 0.264, MeOH). ^1H-NMR (400 MHz, CDCl_3): δ 7.94 (1H, s), 7.46 (1H, d, J = 10.9 Hz), 7.02 (1H, d, J = 10.9 Hz), 6.28 (1H, br-s), 4.57-4.53 (1H, m), 4.06 (3H, s), 3.99 (3H, s), 3.97 (3H, s), 3.84-3.80 (1H, m), 3.62 (3H, s), 3.23 (1H, dd, J = 13.5, 4.9 Hz), 2.34-2.28 (1H, m), 2.12-2.05 (1H, m), 1.79-1.76 (1H, m), 1.08 (3H, d, J = 6.3 Hz), 1.05 (3H, d, J = 6.6 Hz). HR-ESI-MS: calcd for C_{24}H_{29}^{35}ClN_2O_6 [M+H]^+, 477.1792; found, 477.1838; calcd for C_{24}H_{29}^{37}ClN_2O_6 [M+H+2]^+, 479.1763; found, 479.1815.
Synthesis of 4-chloro-\(N\)-(phenylcarbamoyl)deacetylcolchicine (20)

A solution of 4-chlorodeacetylcolchicine (12) (200 mg, 0.51 mmol) and phenyl isocyanate (110 \(\mu\)l, 1.02 mmol) in

\[\text{CH}_2\text{Cl}_2 \] (4 mL) was stirred for 2 h at 0 °C. The reaction mixture was concentrated \textit{in vacuo}. The residue was puriﬁed by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 20 (168 mg, 0.33 mmol, 65% yield) as an amorphous solid.

\[[\alpha]_D^{25} = -52.32 \degree \ (c = 0.052, \text{MeOH}). \]

\(^1\text{H}-\text{NMR} \ (400 \text{ MHz, CDCl}_3) \): \(\delta 8.19 \ (1\text{H, s}), 7.48 \ (1\text{H, d, } J = 10.7 \text{ Hz}), 7.29-7.26 \ (2\text{H, m}), 7.16-7.14 \ (2\text{H, m}), 7.07 \ (1\text{H, d, } J = 8.8 \text{ Hz}), 7.03 \ (1\text{H, d, } J = 11.2 \text{ Hz}), 6.92-6.90 \ (1\text{H, m}), 4.73-4.67 \ (1\text{H, m}), 4.03 \ (3\text{H, s}), 3.99 \ (3\text{H, s}), 3.65 \ (3\text{H, s}), 3.22 \ (1\text{H, dd, } J = 13.5, 5.2 \text{ Hz}), 2.43-2.33 \ (1\text{H, m}), 2.12-2.04 \ (1\text{H, m}), 1.84-1.80 \ (1\text{H, m}). \)

Synthesis of 4-chloro-\(N\)-(dimethylcarbamoyl)deacetylcolchicine (21)

To a stirred solution of 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and Et₃N (26 \(\mu\)L, 0.19 mmol) in

\[\text{CH}_2\text{Cl}_2 \] (2 mL) was added Me₂NCOCl (14 \(\mu\)L, 0.15 mmol) at ambient temperature under argon atmosphere. After stirring 4 h under reflux, Et₃N (52 \(\mu\)L, 0.38 mmol) and Me₂NCOCl (28 \(\mu\)L, 0.38 mmol) were added. Then, the reaction mixture was further reﬂuxed overnight. After adding saturated NaHCO₃ aq, the whole mixture was extracted with CHCl₃. The organic layer was dried over MgSO₄, ﬁltered, and evaporated under reduced pressure. The residue was puriﬁed by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 21 (58 mg, 0.13 mmol, 98% yield) as a pale yellow solid.

\[[\alpha]_D^{25} = -43.28 \degree \ (c = 0.298, \text{MeOH}). \]

\(^1\text{H}-\text{NMR} \ (400 \text{ MHz, CDCl}_3) \): \(\delta 7.58 \ (1\text{H, s}), 7.29 \ (1\text{H, d, } J = 10.7 \text{ Hz}), 6.83 \ (1\text{H, d, } J = 10.7 \text{ Hz}), 5.03 \ (1\text{H, d, } J = 5.9 \text{ Hz}), 4.51-4.45 \ (1\text{H, m}), 4.00 \ (3\text{H, s}), 3.98 \ (3\text{H, s}), 3.95 \ (3\text{H, s}), 3.64 \ (3\text{H, s}), 3.25 \ (1\text{H, dd, } J = 13.1, 4.3 \text{ Hz}), 2.92 \ (6\text{H, s}), 2.31-2.22 \ (1\text{H, m}), 2.18-2.14 \ (1\text{H, m}), 1.77-1.74 \ (1\text{H, m}). \)

Synthesis of 4-chloro-\(N\)-(diethylcarbamoyl)deacetylcolchicine (22)

A solution of 4-chlorodeacetylcolchicine (12) (301 mg, 0.77 mmol), Et\(_3\)N (215 \(\mu\)L, 1.54 mmol) and Et\(_2\)NCOCl (146 \(\mu\)L, 1.54 mmol) in CH\(_2\)Cl\(_2\) (6 mL) was refluxed overnight under argon atmosphere with stirring. After cooling to room temperature, CHCl\(_3\) and saturated NaHCO\(_3\) \text{aq} were added. The organic layer was taken, washed with brine, dried over MgSO\(_4\), filtered, and evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl\(_3\)/MeOH) to afford compound 22 (168 mg, 0.34 mmol, 44% yield) as a yellow solid.

\([\alpha]_{D}^{25}: -20.00^\circ (c = 0.050, \text{MeOH})\). \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.60 (1H, s), 7.31 (1H, d, \(J = 10.7\) Hz), 6.84 (1H, d, \(J = 10.7\) Hz), 4.85 (1H, d, \(J = 6.3\) Hz), 4.55-4.49 (1H, m), 4.01 (3H, s), 3.98 (3H, s), 3.96 (3H, s), 3.64 (3H, s), 3.36-3.32 (2H, m), 3.28-3.19 (3H, m), 2.28-2.23 (1H, m), 2.17-2.14 (1H, m), 1.76-1.74 (1H, m), 1.14 (6H, t, \(J = 7.1\) Hz).

HR-ESI-MS: calcld for C\(_{25}\)H\(_{32}\)ClN\(_2\)O\(_6\) [M\(+\)H]\(^+\), 491.1949; found, 491.1982; calcld for C\(_{25}\)H\(_{32}\)ClN\(_2\)O\(_6\) [M\(+\)H\(+2\)]\(^+\), 493.1919; found, 493.1946.

Synthesis of 4-chloro-\(N\)-(piperidine-1-carbonyl)deacetylcolchicine (23)

Compound 23 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and piperidine-1-carbonyl chloride (80 \(\mu\)L, 0.64 mmol) using the same procedure as that described for compound 22. Yellow solid (36 mg, 0.072 mmol, 56% yield).

\([\alpha]_{D}^{25}: -45.51^\circ (c = 0.145, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.18 (1H, s), 7.11 (1H, d, \(J = 10.7\) Hz), 7.02 (1H, d, \(J = 11.0\) Hz), 7.00 (1H, d, \(J = 7.1\) Hz), 4.20-4.17 (1H, m), 3.91 (3H, s), 3.88 (3H, s), 3.88 (3H, s), 3.53 (3H, s), 3.29-3.28 (4H, m), 3.10 (1H, dd, \(J = 13.5, 4.3\) Hz), 2.09-2.06 (1H, m), 2.00-1.89 (2H, m), 1.56-1.50 (2H, m), 1.41-1.37 (4H, m).

HR-ESI-MS: calcld for C\(_{26}\)H\(_{32}\)ClN\(_2\)O\(_6\) [M\(+\)H]\(^+\), 503.1949; found, 503.1952; calcld for C\(_{26}\)H\(_{32}\)ClN\(_2\)O\(_6\) [M\(+\)H\(+2\)]\(^+\), 505.1919; found, 505.1948.
Synthesis of 4′-chloro-7′-isothiocyanato-7′-de(acetamide)colchicine (64)

A mixture of 4′-chlorodeacetylcolchicine (12) (400 mg, 1.02 mmol), thiophosgene (93 μL, 1.22 mmol) and Et₃N (355 μL, 2.55 mmol) in CH₂Cl₂ (10 mL) was stirred 2h at 0 °C under argon atmosphere. 10% NaHSO₄ aq was added to the reaction mixture and the whole mixture was extracted two times with CHCl₃. The combined organic layers were washed with saturated NaHCO₃ aq and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 64 (443 mg, 1.02 mmol, quant.) as an amorphous solid.

\([\alpha]_{D}^{25}\) -81.11 ° (c = 0.233, MeOH). ¹H-NMR(400MHz, DMSO-d₆): δ 7.24 (1H, s), 7.17 (1H, d, \(J = 10.7\) Hz), 7.10 (1H, d, \(J = 10.7\) Hz), 4.92-4.87 (1H, m), 3.92 (3H, s), 3.88 (3H, s), 3.88 (3H, s), 3.59 (3H, s), 3.11 (1H, dd, \(J = 12.8, 6.0\) Hz), 2.46-2.39 (1H, m), 2.20-2.08 (2H, m). HR-ESI-MS: calcd for C₂₁H₂₁ClNO₅S [M+H]+, 434.0829; found, 434.0819; calcd for C₂₁H₂₁ClNO₅S [M+H+2]+, 436.0799; found, 436.0788.

Synthesis of 4′-chloro-7′-carbamothioyldeacetylcolchicine (24)

To a stirred solution of 4′-chloro-7′-isothiocyanato-7′-de(acetamide)colchicine (64) (26 mg, 0.060 mmol) in 1,4-dioxane (1 mL) was added NH₃ (0.5 mol/L in 1,4-dioxane, 240 μL, 0.12 mmol) at ambient temperature under argon atmosphere. After stirring overnight, the reaction mixture was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 24 (16 mg, 0.035 mmol, 45% yield) as a pale yellow solid.

\([\alpha]_{D}^{25}\) -104.97 ° (c = 0.072, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 8.29 (1H, d, \(J = 7.6\) Hz), 7.14 (1H, d, \(J = 11.0\) Hz), 7.05 (1H, s), 7.03 (1H, d, \(J = 11.0\) Hz), 4.70-4.63 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.89 (3H, s), 3.59 (3H, s), 3.11 (1H, dd, \(J = 12.4, 4.1\) Hz), 2.17-2.01 (2H, m), 1.89-1.81 (1H, m). HR-ESI-MS: calcd for C₂₁H₂₁ClN₂O₅S [M+H]+, 451.1094; found, 451.1065; calcd for C₂₁H₂₁ClN₂O₅S [M+H+2]+, 453.1064; found, 453.1064.
Synthesis of 4'-chloro-\(N\)-(methylcarbamothioyl)deacetylcolchicine (25)

Compound 25 was prepared from 4'-chlorodeacetylcolchicine (12) (63 mg, 0.16 mmol) and methylamine hydrochloride (22 mg, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (58 mg, 0.12 mmol, 78% yield).

\[\alpha^2_{25} D: 95.53^\circ (c = 0.112, \text{MeOH}).\]

\(1^H\)NMR (400 MHz, DMSO-\(d_6\)): \(\delta 8.09 (1H, \text{br} s), 7.46 (1H, \text{br} s), 7.14 (1H, d, J = 10.7 \text{ Hz}), 7.07 (1H, s), 7.03 (1H, d, J = 10.7 \text{ Hz}), 4.82-4.73 (1H, m), 3.91 (3H, s), 3.88 (6H, s), 3.60 (3H, s), 3.14-3.09 (1H, m), 2.82 (3H, d, J = 4.4 Hz), 2.16-1.85 (3H, m). HR-ESI-MS: calcd for C\(_{22}\)H\(_{26}\)ClN\(_2\)O\(_5\)S [M+H]\(^+\), 465.1251; found, 465.1207; calcd for C\(_{22}\)H\(_{26}\)ClN\(_2\)O\(_5\)S [M+H+2]\(^+\), 467.1221; found, 467.1202.

Synthesis of 4'-chloro-\(N\)-(ethylcarbamothioyl)deacetylcolchicine (26)

A solution of 4'-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and ethyl isothiocyanate (22 µl, 0.26 mmol) in MeOH-H\(_2\)O (2:1, 1.5 mL) was stirred for 90 min at 0 °C. The reaction mixture was extracted two times with CHCl\(_3\). The combined organic layers were washed with brine, dried over MgSO\(_4\), filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl\(_3\)/MeOH) to afford compound 26 (30 mg, 0.063 mmol, 49% yield) as a yellow solid.

\[\alpha^2_{25} D: 97.12^\circ (c = 0.202, \text{MeOH}).\]

\(1^H\)NMR (400 MHz, CDCl\(_3\)): \(\delta 8.44 (1H, \text{br} s), 7.84 (1H, s), 7.50 (1H, dd, J = 10.7 \text{ Hz}), 7.04 (1H, d, J = 11.0 \text{ Hz}), 5.07-5.01 (1H, m), 4.07 (3H, s), 3.00 (3H, s), 3.99 (3H, s), 3.74 (3H, s), 3.63-3.56 (1H, m), 3.38-3.33 (1H, m), 3.25 (1H, dd, J = 13.7, 5.4 Hz), 2.49-2.41 (1H, m), 2.13-2.10 (1H, m), 1.96-1.89 (1H, m), 1.11 (3H, t, J = 7.2 Hz). HR-ESI-MS: calcd for C\(_{23}\)H\(_{28}\)ClN\(_2\)O\(_5\)S [M+H]\(^+\), 479.1407; found, 479.1410; calcd for C\(_{23}\)H\(_{28}\)ClN\(_2\)O\(_5\)S [M+H+2]\(^+\), 481.1378; found, 481.1365.

Synthesis of 4'-chloro-\(N\)-(propylcarbamothioyl)deacetylcolchicine (27)

Compound 27 was prepared from 4'-chlorodeacetylcolchicine (12) (63 mg, 0.16 mmol) and propylamine (26 µL, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (54 mg, 0.11 mmol, 69% yield).

\[\alpha^2_{25} D: 88.98^\circ (c = 0.251, \text{MeOH}).\]

\(1^H\)NMR (400 MHz, DMSO-\(d_6\)): \(\delta 7.97 (1H, \text{br} s), 7.54 (1H, \text{br} s), 7.14 (1H, d, J = 10.7 \text{ Hz}), 7.06 (1H, s), 7.03 (1H, d, J = 10.7 \text{ Hz}), 4.81-4.71 (1H, m), 3.91 (3H, s), 3.88 (6H,
s), 3.60 (3H, s), 3.30-3.21 (2H, m), 3.12 (1H, dd, $J = 12.9, 5.1$ Hz), 2.17-1.81 (3H, m), 1.51-1.42 (2H, m), 0.84 (3H, t, $J = 7.4$ Hz). HR-ESI-MS: calcd for C$_{24}$H$_{30}$ClN$_2$O$_5$S $[M+H]^+$, 493.1564; found, 493.1559; calcd for C$_{24}$H$_{30}$ClN$_2$O$_5$S $[M+H+2]^+$, 495.1534; found, 495.1614.

Synthesis of 4-chloro-\(\text{N}^{\text{butylcarbamothioyl}}\)deacetylcolchicine (28)

Compound 28 was prepared from 4-chlorodeacetylcolchicine (12) (64 mg, 0.16 mmol) and butylamine (32 µL, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (55 mg, 0.11 mmol, 68% yield).

[\(\alpha\)_D25: -95.34 ° (c = 0.236, MeOH). 1H-NMR (400 MHz, DMSO-\(d_6\)): δ 7.96 (1H, br-s), 7.51 (1H, br-s), 7.14 (1H, d, $J = 10.5$ Hz), 7.05 (1H, s), 7.03 (1H, d, $J = 10.5$ Hz), 4.80-4.70 (1H, m), 3.91 (3H, s), 3.88 (6H, s), 3.60 (3H, s), 3.42-3.35 (1H, m), 3.30-3.26 (1H, m), 3.12 (1H, dd, $J = 12.6, 5.0$ Hz), 2.17-1.81 (3H, m), 1.47-1.40 (2H, m), 1.30-1.24 (2H, m), 0.86 (3H, t, $J = 7.3$ Hz). HR-ESI-MS: calcd for C$_{25}$H$_{32}$ClN$_2$O$_5$S $[M+H]^+$, 507.1720; found, 507.1777; calcd for C$_{25}$H$_{32}$ClN$_2$O$_5$S $[M+H+2]^+$, 509.1691; found, 509.1759.

Synthesis of 4-chloro-\(\text{N}^{\text{hexylcarbamothioyl}}\)deacetylcolchicine (29)

Compound 29 was prepared from 4-chlorodeacetylcolchicine (12) (62 mg, 0.16 mmol) and \(n\)-hexylamine (42 µL, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (54 mg, 0.10 mmol, 63% yield).

[\(\alpha\)_D25: -90.24 ° (c = 0.232, MeOH). 1H-NMR (400 MHz, DMSO-\(d_6\)): δ 7.98 (1H, br-s), 7.51 (1H, br-s), 7.14 (1H, d, $J = 10.7$ Hz), 7.05-7.01 (2H, m), 4.81-4.69 (1H, m), 3.91 (3H, s), 3.88 (6H, s), 3.60 (3H, s), 3.31-3.23 (2H, m), 3.14-3.09 (1H, m), 2.17-1.80 (3H, m), 1.30-1.21 (8H, m), 0.85 (3H, t, $J = 6.8$ Hz). HR-ESI-MS: calcd for C$_{27}$H$_{36}$ClN$_2$O$_5$S $[M+H]^+$, 535.2033; found, 535.2028; calcd for C$_{27}$H$_{36}$ClN$_2$O$_5$S $[M+H+2]^+$, 537.2004; found, 537.2000.
Synthesis of 4-chloro-\(\text{N}(\text{hydroxyethylcarbamothioyl})\)deacetylcolchicine (30)

Compound 30 was prepared from 4-chlorodeacetylcolchicine (12) (62 mg, 0.16 mmol) and hydroxyethylamine (19 \(\mu\)L, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (15 mg, 0.030 mmol, 19% yield).

\([\alpha]_{D}^{25}\) = -85.83 \(\circ\) (\(c = 0.200\), MeOH). ¹H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.19 (1H, br-s), 7.60 (1H, br-s), 7.15 (1H, d, \(J = 10.5\) Hz), 7.05-7.02 (2H, m), 4.82 (1H, s), 4.75 (1H, s), 3.91 (3H, s), 3.89 (6H, s), 3.60 (3H, s), 3.49-3.42 (3H, m), 3.39-3.35 (1H, m), 3.14-3.09 (1H, m), 2.17-2.03 (2H, m), 1.89-1.77 (1H, m). HR-ESI-MS: calcd for \(\text{C}_{23}\text{H}_{28}\text{ClN}_{2}\text{O}_{6}\text{S} [M+H]^{+}\), 495.1357; found, 495.1364; calcd for \(\text{C}_{23}\text{H}_{28}\text{ClN}_{2}\text{O}_{6}\text{S} [M+H+2]^{+}\), 497.1327; found, 497.1322.

Synthesis of 4-chloro-\(\text{N}(\text{dimethylcarbamothioyl})\)deacetylcolchicine (31)

Compound 31 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and dimethylamine hydrochloride using the same procedure as that described for compound 32. Pale yellow solid (37 mg, 0.077 mmol, quant.).

\([\alpha]_{D}^{25}\) = -52.10 \(\circ\) (\(c = 0.119\), MeOH). ¹H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 7.63 (1H, d, \(J = 7.1\) Hz), 7.15 (1H, d, \(J = 11.0\) Hz), 7.09 (1H, s), 7.02 (1H, d, \(J = 11.0\) Hz), 4.91-4.85 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.62 (3H, s), 3.20 (6H, s), 3.12 (1H, dd, \(J = 13.2, 5.1\) Hz), 2.26-2.18 (1H, m), 2.16-2.08 (1H, m), 2.04-1.95 (1H, m). HR-ESI-MS: calcd for \(\text{C}_{23}\text{H}_{28}\text{ClN}_{2}\text{O}_{5}\text{S} [M+H]^{+}\), 479.1407; found, 479.1403; calcd for \(\text{C}_{23}\text{H}_{28}\text{ClN}_{2}\text{O}_{5}\text{S} [M+H+2]^{+}\), 481.1378; found, 481.1453.

Synthesis of 4-chloro-\(\text{N}(\text{diethylcarbamothioyl})\)deacetylcolchicine (32)

To a stirred solution of 4-chlorodeacetylcolchicine (12) (30 mg, 0.077 mmol) and Et\(_3\)N (26 \(\mu\)L, 0.18 mmol) in CH\(_2\)Cl\(_2\) (1.5 mL) was added thiophosgene (6.1 \(\mu\)L, 0.080 mmol) at 0 °C under argon atmosphere. After stirring 2 h at 0°C, Et\(_2\)NH (16 \(\mu\)L, 0.15 mmol) was added. Then the reaction mixture was stirred overnight and allowed to warm to ambient temperature during the course of the reaction. The reaction was quenched with 10% citric acid. After diluting with AcOEt, the organic layer was taken, dried over Na\(_2\)SO\(_4\), filtered, and evaporated in vacuo. The residue was purified by silica gel flash column chromatography (CHCl\(_3\)/MeOH) to afford compound 32 (33 mg, 0.065 mmol, 85% yield) as an off-white solid.
Compound 33 was prepared from 4′-chloroacetylcolchicine (12) (30 mg, 0.078 mmol) and di-n-propylamine using the same procedure as that described for compound 32. Off-white solid (41 mg, 0.075 mmol, 98% yield).

\[
\text{[a]_D^{25}}: -38.54 \, ^\circ \ (c = 0.472, \text{MeOH}). \ \ \ \text{H-NMR} \ (400 \text{ MHz, DMSO-}d_6): \ \ \ \delta \ 7.54 \ (1H, d, J = 6.8Hz), 7.15 \ (1H, d, J = 11.0 Hz), 7.08 \ (1H, s), 7.03 \ (1H, d, J = 11.0 Hz), 5.02 - 4.95 \ (1H, m), 3.91 \ (3H, s), 3.89 \ (3H, s), 3.88 \ (3H, s), 3.72 - 3.64 \ (4H, m), 3.62 \ (3H, s), 3.12 \ (1H, dd, J = 13.5, 5.5 Hz), 2.33 - 2.24 \ (1H, m), 2.15 - 2.07 \ (1H, m), 2.02 - 1.95 \ (1H, m), 1.09 \ (6H, t, J = 7.0 Hz). \ \ \ \text{HR-ESI-MS: calcd for C}_{25}\text{H}_{32}\text{ClN}_2\text{O}_5\text{S} \ [\text{M+H}]^+, 507.1720; \ \ \ \text{found}, \ 507.1714; \ \ \ \text{calcd for C}_{25}\text{H}_{32}\text{ClN}_2\text{O}_5\text{S} \ [\text{M+H+2}]^+, 509.1691; \ \ \ \text{found}, \ 509.1718.
\]

Synthesis of 4′-chloro-\text{N}(\text{di-n-propylcarbamothioyl})\text{deacetylcolchicine (33)}

Synthesis of 4′-chloro-\text{N}(\text{2-hydroxyethyl} \text{methylcarbamothioyl})\text{deacetylcolchicine (34)}
Synthesis of N^1-(azetidine-N^1-carbonothioyl)-4-chlorodeacetylcolchicine (35)

Compound 35 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and azetidine using the same procedure as that described for compound 32. Off-white solid (7 mg, 0.014 mmol, 18% yield).

$[\alpha]_D^{25} = -17.42^\circ$ (c = 0.092, MeOH).

1H-NMR (400 MHz, DMSO-d_6): δ 7.85 (1H, d, J = 7.3 Hz), 7.14 (1H, d, J = 11.0 Hz), 7.08 (1H, s), 7.03 (1H, d, J = 11.0 Hz), 4.80-4.73 (1H, m), 4.08-4.00 (4H, m), 3.91 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.60 (3H, s), 3.12 (1H, dd, J = 12.6, 6.2 Hz), 2.22-2.06 (4H, m), 2.02-1.92 (1H, m).

HR-ESI-MS: calcd for C$_{24}$H$_{28}$ClN$_2$O$_5$S $[M+H]^+$, 491.1407; found, 491.1491; calcd for C$_{24}$H$_{28}$ClN$_2$O$_5$S$+2$, 493.1378; found, 493.1458.

Synthesis of 4-chloro-N^1-(pyrrolidine-N^1-carbonothioyl)deacetylcolchicine (36)

Compound 36 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and pyrrolidine using the same procedure as that described for compound 32. Pale yellow solid (28 mg, 0.055 mmol, 72% yield).

$[\alpha]_D^{25} = -25.57^\circ$ (c = 0.078, MeOH).

1H-NMR (400 MHz, DMSO-d_6): δ 7.55 (1H, d, J = 7.3 Hz), 7.15 (1H, d, J = 10.7 Hz), 7.12 (1H, s), 7.03 (1H, d, J = 10.7 Hz), 4.94-4.87 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.61 (3H, s), 3.58-3.45 (4H, m), 3.12 (1H, dd, J = 13.4, 5.1 Hz), 2.22-1.84 (7H, m). HR-ESI-MS: calcd for C$_{25}$H$_{30}$ClN$_2$O$_5$S $[M+H]^+$, 505.1564; found, 505.1608; calcd for C$_{25}$H$_{30}$ClN$_2$O$_5$S$+2$, 507.1534; found, 507.1632.

Synthesis of 4-chloro-N^1-(piperidine-N^1-carbonothioyl)deacetylcolchicine (37)

Compound 37 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and piperidine using the same procedure as that described for compound 32. Off-white solid (28 mg, 0.054 mmol, 70% yield).

$[\alpha]_D^{25} = -30.97^\circ$ (c = 0.090, MeOH).

1H-NMR (400 MHz, DMSO-d_6): δ 7.85 (1H, d, J = 7.1 Hz), 7.15 (1H, d, J = 10.7 Hz), 7.06 (1H, s), 7.03 (1H, d, J = 10.7 Hz), 4.96-4.90 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.86-3.76 (4H, m), 3.63 (3H, s), 3.12 (1H, dd, J = 13.1, 5.2 Hz), 2.23-1.96 (3H, m), 1.64-1.58 (2H, m), 1.50-1.44 (4H, m). HR-ESI-MS: calcd for C$_{26}$H$_{32}$ClN$_2$O$_5$S $[M+H]^+$, 519.1720; found, 519.1714; calcd for C$_{26}$H$_{32}$ClN$_2$O$_5$S$+2$, 521.1691; found, 521.1689.
Synthesis of 4-chloro-\(N\)(morpholine-4-carbonothioyl)deacetylcolchicine (38)

Compound 38 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and morpholine using the same procedure as that described for compound 32. Off-white solid (28 mg, 0.054 mmol, 70% yield).

\([\alpha]^2_{D}\): -50.76° (c = 0.118, MeOH). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.03 (1H, d, \(J = 7.1\) Hz), 7.16 (1H, d, \(J = 10.7\) Hz), 7.05 (1H, s), 7.03 (1H, d, \(J = 10.7\) Hz), 4.92-4.86 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.88 (3H, s), 3.87-3.75 (4H, m), 3.62 (3H, s), 3.59 (4H, t, \(J = 4.8\) Hz), 3.12 (1H, dd, \(J = 12.2, 5.1\) Hz), 2.21-1.99 (3H, m).

Synthesis of 4-chloro-\(N\)(phenylcarbamothioyl)deacetylcolchicine (39)

Compound 39 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and phenyl isothiocyanate (30 \(\mu\)L, 0.26 mmol) using the same procedure as that described for compound 22. Pale yellow solid (50 mg, 0.095 mmol, 74% yield).

\([\alpha]^2_{D}\): -84.76° (c = 0.140, MeOH). \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.85 (1H, br s), 8.01 (1H, br s), 7.86 (1H, d, \(J = 7.3\) Hz), 7.50 (1H, d, \(J = 10.2\) Hz), 7.36 (1H, d, \(J = 7.6\) Hz), 7.29-7.27 (2H, m), 7.15 (1H, t, \(J = 7.2\)Hz), 7.02 (1H, d, \(J = 11.2\) Hz), 5.13-5.07 (1H, m), 4.04 (3H, s), 3.99 (3H, s), 3.99 (3H, s), 3.72 (3H, s), 3.20 (1H, dd, \(J = 13.8, 5.7\) Hz), 2.45-2.35 (1H, m), 2.04-1.98 (1H, m), 1.94-1.86 (1H, m).

Synthesis of 4-chloro-\(N\)(2-methoxyphenylcarbamothioyl)deacetylcolchicine (40)

Compound 40 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and \(o\)-anisidine using the same procedure as that described for compound 45. Off-white solid (14 mg, 0.025 mmol, 33% yield).

\([\alpha]^2_{D}\): -62.49° (c = 0.066, MeOH). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 9.17 (1H, s), 8.61 (1H, d, \(J = 7.1\) Hz), 7.92 (1H, dd, \(J = 7.8\) Hz, 1.4 Hz), 7.16 (1H, d, \(J = 10.5\) Hz), 7.13-7.09 (2H, m), 7.06-7.02 (2H, m), 6.86 (1H, td, \(J = 7.8, 1.4\) Hz), 4.84-4.78 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.86 (3H, s), 3.62 (3H, s), 3.18-3.10 (1H, m), 3.68 (3H, s), 3.62 (3H, s), 3.59 (4H, t, \(J = 4.8\) Hz), 3.12 (1H, dd, \(J = 12.2, 5.1\) Hz), 2.21-1.99 (3H, m).
2.20-2.09 (2H, m), 1.99-1.91 (1H, m). HR-ESI-MS: calcd for C_{28}H_{30}^{35}ClN_{2}O_{6}S [M+H]^+, 557.1513; found, 557.1429; calcd for C_{28}H_{30}^{37}ClN_{2}O_{6}S [M+H+2]^+, 559.1484; found, 559.1428.

Synthesis of 4-chloro-\(\text{N}(3\text{-methoxyphenyl})\text{carbamothioyl})\text{deacetylcolchicine (41)}

Compound 41 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and \(m\)-anisidine using the same procedure as that described for compound 45. Off-white solid (39 mg, 0.070 mmol, 91% yield).

\([\alpha]_{D}^{25}\cdot 74.42^\circ \text{ (c} = 0.258, \text{ MeOH).} \) \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta \) 9.72 (1H, s), 8.44 (1H, d, \(J = 7.1 \text{ Hz})\), 7.22-7.11 (4H, m), 7.04 (1H, d, \(J = 11.2 \text{ Hz})\), 6.95 (1H, d, \(J = 8.3, 1.5 \text{ Hz})\), 6.66 (1H, ddd, \(J = 8.3, 2.4, 0.7 \text{ Hz})\), 4.83-4.76 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.71 (3H, s), 3.62 (3H, s), 3.16-3.10 (1H, m), 2.19-2.10 (2H, m), 2.04-1.98 (1H, m). HR-ESI-MS: calcd for C_{28}H_{30}^{35}ClN_{2}O_{6}S [M+H]^+, 557.1513; found, 557.1515; calcd for C_{28}H_{30}^{37}ClN_{2}O_{6}S [M+H+2]^+, 559.1484; found, 559.1506.

Synthesis of 4-chloro-\(\text{N}((4\text{-methoxyphenyl})\text{carbamothioyl})\text{deacetylcolchicine (42)}

Compound 42 was prepared from 4-chlorodeacetylcolchicine (12) (62 mg, 0.16 mmol) and \(p\)-anisidine (39 mg, 0.32 mmol) using the same procedure as that described for compound 32. Yellow solid (64 mg, 0.12 mmol, 72% yield).

\([\alpha]_{D}^{25}\cdot 51.66^\circ \text{ (c} = 0.211, \text{ MeOH).} \) \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta \) 9.50 (1H, s), 8.20 (1H, d, \(J = 7.3 \text{ Hz})\), 7.27 (2H, d, \(J = 8.8 \text{ Hz})\), 7.15 (1H, d, \(J = 10.5 \text{ Hz})\), 7.11 (1H, s), 7.03 (1H, d, \(J = 10.5 \text{ Hz})\), 6.88 (2H, d, \(J = 8.8 \text{ Hz})\), 4.83-4.77 (1H, m), 3.91 (3H, s), 3.89 (6H, s), 3.73 (3H, s), 3.61 (3H, s), 3.15-3.10 (1H, m), 2.16-1.96 (3H, m). HR-ESI-MS: calcd for C_{28}H_{30}^{35}ClN_{2}O_{6}S [M+H]^+, 557.1513; found, 557.1516; calcd for C_{28}H_{30}^{37}ClN_{2}O_{6}S [M+H+2]^+, 559.1484; found, 559.1501.
Synthesis of 4-chloro-N(2-cyanophenylcarbamothioyl)deacetylcolchicine (43)

A solution of 2-cyanoaniline (14 mg, 0.11 mmol) and thiophosgene (8.8 µl, 0.11 mmol) in CH₂Cl₂-H₂O (1:1, 3 mL) was stirred for 3 h at room temperature under argon atmosphere. After adding a solution of 4-chlorodeacetylcolchicine (11) (30 mg, 0.077 mmol) in CH₂Cl₂ (0.5 mL) and a solution of Na₂CO₃ (12 mg, 0.11 mmol) in H₂O (0.5 mL), the reaction mixture was stirred overnight and allowed to warm to ambient temperature during the course of the reaction. Brine was added to the reaction mixture and the whole mixture was extracted two times with CHCl₃. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 43 (19 mg, 0.035 mmol, 45% yield) as an off-white solid.

[α]²⁵⁺: -96.20° (c = 0.089, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 9.77 (1H, s), 8.87 (1H, d, J = 7.1 Hz), 7.79 (1H, dd, J = 7.7, 1.3 Hz), 7.66-7.57 (2H, m), 7.35 (1H, td, J = 7.7, 1.3 Hz), 7.16 (1H, d, J = 10.7 Hz), 7.14 (1H, s), 7.04 (1H, d, J = 10.7 Hz), 4.83-4.77 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.89 (3H, s), 3.60 (3H, s), 3.19-3.10 (1H, m), 2.17-1.98 (3H, m). HR-ESI-MS: calcd for C₂₈H₂₇ClN₃O₅S [M+H]+, 552.1360; found, 552.1365; calcd for C₂₈H₂₇ClN₃O₅S [M+H+2]+, 554.1330; found, 554.1353.

Synthesis of 4-chloro-N(3-cyanophenylcarbamothioyl)deacetylcolchicine (44)

Compound 44 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.077 mmol) and 3-cyanoaniline using the same procedure as that described for compound 45. Amorphous solid (42 mg, 0.077 mmol, quant.).

[α]²⁵⁺: -84.31° (c = 0.102, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 9.95 (1H, s), 8.73 (1H, d, J = 6.8 Hz), 8.03 (1H, s), 7.72 (1H, d, J = 7.6 Hz), 7.54-7.47 (2H, m), 7.17 (1H, d, J = 10.7 Hz), 7.12 (1H, s), 7.05 (1H, d, J = 10.7 Hz), 4.80-4.74 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.62 (3H, s), 3.20-3.11 (1H, m), 2.21-2.12 (2H, m), 2.04-1.98 (1H, m). HR-ESI-MS: calcd for C₂₈H₂₇ClN₃O₅S [M+H]+, 552.1360; found, 552.1364; calcd for C₂₈H₂₇ClN₃O₅S [M+H+2]+, 554.1330; found, 554.1354.
Synthesis of 4-chloro-N(4-cyanophenylcarbamothioyl)deacetylcolchicine (45)

A solution of 4-cyanoaniline (14 mg, 0.11 mmol), thiophosgene (8.8 µl, 0.11 mmol) and Et₃N (32 µl, 0.11 mmol) in CH₂Cl₂ (1.5 mL) was stirred for 2 h at 0 °C under argon atmosphere. After adding 4-chlorodeacetylcolchicine (12) (30 mg, 0.077 mmol), the reaction mixture was stirred overnight and allowed to warm to ambient temperature during the course of the reaction. The resulting mixture was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 45 (42 mg, 0.077 mmol, quant.) as an off-white solid. [α]²⁵° D: -91.09 ° (c = 0.206, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 10.12 (1H, s), 8.83 (1H, d, J = 7.1 Hz), 7.76-7.71 (4H, m), 7.17 (1H, d, J = 10.7 Hz), 7.12 (1H, s), 7.05 (1H, d, J = 10.7 Hz), 4.77-4.71 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.63 (3H, s), 3.20-3.11 (1H, m), 2.22-1.98 (3H, m). HR-ESI-MS: calcd for C₂₈H₂₇ClN₃O₅S [M+H]+, 552.1360; found, 552.1370; calcd for C₂₈H₂₇ClN₃O₅S [M+H+2]+, 554.1330; found, 554.1359.

Synthesis of 4-chloro-N(3-(dimethylamino)phenylcarbamothioyl)deacetylcolchicine (46)

Compound 46 was prepared from 4-chlorodeacetylcolchicine (12) (30 mg, 0.078 mmol) and N,N-dimethyl-4-phenylenediamine hydrochloride using the same procedure as that described for compound 32. Amorphous solid (7 mg, 0.014 mmol, 18% yield). [α]²⁵° D: -12.71 ° (c = 0.157, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 9.60 (1H, s), 8.29 (1H, d, J = 7.1 Hz), 7.16 (1H, d, J = 10.9 Hz), 7.11 (1H, s), 7.10 (1H, t, J = 8.1 Hz), 7.03 (1H, d, J = 10.9 Hz), 6.91 (1H, t, J = 2.0 Hz), 6.66 (1H, dd, J = 8.1, 1.6 Hz), 6.48 (1H, dd, J = 8.1, 2.4 Hz), 4.84-4.78 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.62 (3H, s), 3.17-3.08 (1H, m), 2.86 (6H, s), 2.18-1.99 (3H, m). HR-ESI-MS: calcd for C₂₉H₃₃ClN₃O₅S [M+H]+, 570.1829; found, 570.1815; calcd for C₂₉H₃₃ClN₃O₅S [M+H+2]+, 572.1800; found, 572.1799.
Synthesis of 4-chloro-\(N(4\text{-dimethylamino)phenylcarbamothioyl})\)deacetylcolchicine (47)

Compound 47 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and 4-(dimethylamino)phenyl isothiocyanate (43 mg, 0.26 mmol) using the same procedure as that described for compound 26. Yellow solid (46 mg, 0.081 mmol, 63% yield).

\([\alpha]_{D}^{25} +10.77 \, (c = 0.204, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta 9.40\) (1H, s), 8.02 (1H, d, \(J = 6.6\) Hz), 7.15 (1H, d, \(J = 10.7\) Hz), 7.14 (2H, d, \(J = 8.3\) Hz), 7.10 (1H, s), 7.03 (1H, d, \(J = 11.0\) Hz), 6.68 (2H, d, \(J = 8.8\) Hz), 4.84-4.79 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.89 (3H, s), 3.61 (3H, s), 3.36 (3H, s), 3.11 (1H, dd, \(J = 12.8, 5.5\) Hz), 2.87 (6H, s), 2.13-2.09 (2H, m), 2.03-1.98 (1H, m). HR-ESI-MS: calcd for C\(_{29}\)H\(_{33}\)ClN\(_3\)O\(_5\)S \([\text{M+H}]^+\), 570.1829; found, 570.1864; calcd for C\(_{29}\)H\(_{33}\)ClN\(_3\)O\(_5\)S \([\text{M+H+2}]^+\), 572.1800; found, 572.1852.

Synthesis of 4-chloro-\(N(\text{pyridin-2-ylcarbamothioyl})\)deacetylcolchicine (48)

Compound 48 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 2-aminopyridine (7 mg, 0.076 mmol) using the same procedure as that described for compound 59. Off-white solid (17 mg, 0.033 mmol, 47% yield).

\([\alpha]_{D}^{25} +158.33 \, (c = 0.108, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta 12.37\) (1H, d, \(J = 6.8\) Hz), 10.85 (1H, s), 8.34-8.32 (1H, m), 7.86-7.81 (1H, m), 7.22-7.18 (2H, m), 7.14-7.11 (1H, m), 7.07 (1H, d, \(J = 10.7\) Hz), 7.00 (1H, s), 4.87-4.80 (1H, m), 3.93 (3H, s), 3.90 (6H, s), 3.63 (3H, s), 3.20-3.15 (1H, m), 2.31-2.09 (3H, m). HR-ESI-MS: calcd for C\(_{26}\)H\(_{27}\)ClN\(_3\)O\(_5\)S \([\text{M+H}]^+\), 528.1360; found, 528.1315; calcd for C\(_{26}\)H\(_{27}\)ClN\(_3\)O\(_5\)S \([\text{M+H+2}]^+\), 530.1330; found, 530.1295.

Synthesis of 4-chloro-\(N(3\text{-pyridylcarbamothioyl})\)deacetylcolchicine (49)

Compound 49 was prepared from 4-chlorodeacetylcolchicine (12) (50 mg, 0.13 mmol) and 3-pyridyl isothiocyanate (29 \(\mu\)L, 0.26 mmol) using the same procedure as that described for compound 26. Pale yellow solid (51 mg, 0.097 mmol, 76% yield).

\([\alpha]_{D}^{25} -127.75 \, (c = 0.227, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta 9.79\) (1H, s), 8.67 (1H, d, \(J = 6.8\) Hz), 8.57 (1H, d, \(J = 2.2\) Hz), 8.28 (1H, d, \(J = 8.8\) Hz), 7.81 (1H, dd, \(J = 10.7, 5.5\) Hz), 7.17 (1H, d, \(J = 11.0\) Hz), 7.07 (1H, d, \(J = 10.7\) Hz), 6.81 (2H, d, \(J = 8.8\) Hz), 4.85-4.79 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.61 (3H, s), 3.36 (3H, s), 3.11 (1H, dd, \(J = 12.8, 5.5\) Hz), 2.87 (6H, s), 2.13-2.09 (2H, m), 2.02-1.98 (1H, m). HR-ESI-MS: calcd for C\(_{29}\)H\(_{33}\)ClN\(_3\)O\(_5\)S \([\text{M+H}]^+\), 570.1829; found, 570.1864; calcd for C\(_{29}\)H\(_{33}\)ClN\(_3\)O\(_5\)S \([\text{M+H+2}]^+\), 572.1800; found, 572.1852.
= 3.7 Hz), 7.94 (1H, d, J = 8.1 Hz), 7.32 (1H, dd, J = 8.2, 4.8 Hz), 7.17 (1H, d, J = 10.7 Hz),
7.14 (1H, s), 7.05 (1H, d, J = 11.0 Hz), 4.81-4.75 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.89 (3H, s), 3.61 (3H, s), 3.17-3.12 (1H, m), 2.19-2.13 (2H, m), 2.06-1.99 (1H, m).
HR-ESI-MS: calcd for C_{26}H_{27}ClN_{3}O_{5}S [M+H]^+, 528.1360; found, 528.1376; calcd for C_{26}H_{27}ClN_{3}O_{5}S [M+H+2]^+, 530.1330; found, 530.1366.

Synthesis of 4-chloro-N(pyridin-4-ylcarbamothioyl)deacetylcolchicine (50)

Compound 50 was prepared from 4-chloro-deacetylcolchicine (12) (30 mg, 0.077 mmol) and 4-aminopyridine (11 mg, 0.11 mmol) using the same procedure as that described for compound 32. Yellow solid (25 mg, 0.048 mmol, 63% yield).

[α]_{D}^{25}: -14.24 o (c = 0.128, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 10.07 (1H, s), 8.89 (1H, d, J = 6.8 Hz), 8.37 (2H, d, J = 5.6 Hz), 7.59 (2H, d, J = 5.6 Hz), 7.18 (1H, d, J = 10.7 Hz), 7.11 (1H, s), 7.05 (1H, d, J = 10.7 Hz), 4.76-4.69 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.63 (3H, s), 3.18-3.13 (1H, m), 2.22-2.12 (2H, m), 2.06-1.97 (1H, m). HR-ESI-MS: calcd for C_{26}H_{27}ClN_{3}O_{5}S [M+H]^+, 528.1360; found, 528.1323; calcd for C_{26}H_{27}ClN_{3}O_{5}S [M+H+2]^+, 530.1330; found, 530.1307.

Synthesis of 4-chloro-N(pyridazin-3-ylcarbamothioyl)deacetylcolchicine (51)

Compound 51 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 3-aminopyrididine (7 mg, 0.076 mmol) using the same procedure as that described for compound 59. Off-white solid (20 mg, 0.037 mmol, 54% yield).

[α]_{D}^{25}: +83.98 o (c = 0.077, MeOH). ¹H-NMR (400 MHz, DMSO-d₆): δ 12.15 (1H, d, J = 6.8 Hz), 11.07 (1H, s), 8.97 (1H, d, J = 4.6 Hz), 7.74 (1H, dd, J = 9.0, 4.6 Hz), 7.54 (1H, d, J = 9.0 Hz), 7.21 (1H, d, J = 10.7 Hz), 7.04 (1H, d, J = 10.7 Hz), 7.00 (1H, s), 4.87-4.81 (1H, m), 3.93 (3H, s), 3.90 (6H, s), 3.64 (3H, s), 3.19 (1H, dd, J = 12.4, 3.4 Hz), 2.35-2.19 (2H, m), 2.13-2.05 (1H, m). HR-ESI-MS: calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H]^+, 529.1312; found, 529.1375; calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H+2]^+, 531.1283; found, 531.1337.
Synthesis of 4-chloro-\(\mathbf{N}^2\)(pyrimidin-5-yIcarbamothioyl)deacetylcolchicine (52)

Compound 52 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 5-aminopyrimidine (8 mg, 0.083 mmol) using the same procedure as that described for compound 59. Yellow solid (18 mg, 0.034 mmol, 49% yield).

\[\alpha \] _D^25: -130.95° (c = 0.160, MeOH).

\(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta \) 9.83 (1H, s), 8.89 (1H, d, \(J = 7.1 \) Hz), 8.88 (1H, s), 8.87 (2H, s), 7.17 (1H, d, \(J = 10.7 \) Hz), 7.13 (1H, s), 7.05 (1H, d, \(J = 10.7 \) Hz), 4.81-4.74 (1H, m), 3.91 (3H, s), 3.89 (3H, s), 3.61 (3H, s), 3.20-3.11 (1H, m), 2.23-2.11 (2H, m), 2.05-1.98 (1H, m).

HR-ESI-MS: calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H]^+, 529.1312; found, 529.1310; calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H+2]^+, 531.1283; found, 531.1276.

Synthesis of 4-chloro-\(\mathbf{N}^2\)(pyrazin-2-yIcarbamothioyl)deacetylcolchicine (53)

Compound 53 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 2-aminopyrazine (10 mg, 0.10 mmol) using the same procedure as that described for compound 59. Off-white solid (14 mg, 0.026 mmol, 38% yield).

\[\alpha \] _D^25: +148.25° (c = 0.069, MeOH).

\(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta \) 11.51 (1H, d, \(J = 6.8 \) Hz), 11.18 (1H, s), 8.59 (1H, d, \(J = 1.2 \) Hz), 8.34 (1H, dd, \(J = 2.7, 1.2 \) Hz), 8.32 (1H, d, \(J = 2.7 \) Hz), 7.20 (1H, d, \(J = 10.7 \) Hz), 7.07 (1H, d, \(J = 10.7 \) Hz), 7.00 (1H, s), 4.84-4.78 (1H, m), 3.93 (3H, s), 3.89 (6H, s), 3.63 (3H, s), 3.20-3.15 (1H, m), 2.30-2.12 (3H, m). HR-ESI-MS: calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H]^+, 529.1312; found, 529.1284; calcd for C_{25}H_{26}ClN_{4}O_{5}S [M+H+2]^+, 531.1283; found, 531.1236.

Synthesis of \(\mathbf{N}^2\)(thiazol-2-yI)imidazole-1-carbothioamide

To a stirred solution of 2-aminothiazole (1.00 g, 9.99 mmol) in MeCN (10 mL) was added 1,1’-thiocarbonyldiimidazole (1.78 g, 9.99 mmol) at ambient temperature under argon atmosphere. After stirring 2 h at 40°C, the mixture was cooled to 0°C. The precipitate was collected by filtration, washed with cold MeCN and n-hexane, and dried in reduced pressure to afford the desired material (1.37 g, 6.49 mmol, 65% yield) as a pale yellow solid.

\(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta \) 8.64 (1H, s), 7.95 (1H, t, \(J = 1.2 \) Hz), 7.75 (1H, d, \(J = 4.4 \) Hz), 7.31 (1H, dd, \(J = 4.1 \) Hz), 7.07 (1H, s). ESI-MS m/z: 211 [M+H]^+.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications

This journal is © The Royal Society of Chemistry 2014
Synthesis of 4-chloro-N(thiazol-2-ylcarbamothioyl)deacetylcolchicine (54)

To a stirred solution of 4-chlorodeacetylcolchicine (12) (30 mg, 0.077 mmol) in MeCN (1.5 mL) was added N(thiazol-2-yl)-1H-imidazole-1-carbothioamide (18 mg, 0.084 mmol) at room temperature under argon atmosphere. The solution was heated under reflux for 1 h with stirring.

After cooling to room temperature, 10% NaHSO₄ aq. was added to the reaction mixture and the whole mixture was extracted two times with AcOEt. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH) to afford compound 54 (38 mg, 0.071 mmol, 93% yield) as an off-white solid.

\[\alpha \]ᵣ₂₅ : +28.38 ° (c = 0.250, MeOH).

¹H-NMR (400 MHz, DMSO-d₆): δ 7.44 (1H, br-s), 7.20-7.01 (4H, m), 4.76-4.69 (1H, m), 3.93 (3H, s), 3.89 (6H, s), 3.64 (3H, s), 3.20-3.13 (1H, m), 2.23-1.98 (3H, m). HR-ESI-MS: calcd for C₂₄H₂₅ClN₃O₅S₂ [M+H]+, 534.0924; found, 534.1058; calcd for C₂₄H₂₅ClN₃O₅S₂ [M+H+2]+, 536.0895; found, 536.1025.

Synthesis of 4-chloro-N((4-methylthiazol-2-yl)carbamothioyl)deacetylcolchicine (55)

Compound 55 was prepared from 4-chloro-7-isothiocyanato-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 2-amino-4-methylthiazole (16 mg, 0.14 mmol) using the same procedure as that described for compound 59. Yellow solid (25 mg, 0.046 mmol, 66% yield).

\[\alpha \]ᵣ₂₅ : +38.97 ° (c = 0.136, MeOH).

¹H-NMR (400 MHz, DMSO-d₆): δ 7.18 (1H, d, J = 10.5 Hz), 7.08-7.00 (2H, m), 6.69 (1H, br-s), 4.76-4.69 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.64 (3H, s), 3.19-3.13 (1H, m), 2.27-2.00 (3H, m), 2.24 (3H, br-s). HR-ESI-MS: calcd for C₂₅H₂₇ClN₃O₅S₂ [M+H]+, 548.1081; found, 548.1034; calcd for C₂₅H₂₇ClN₃O₅S₂ [M+H+2]+, 550.1051; found, 550.0988.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications
This journal is © The Royal Society of Chemistry 2014
Synthesis of 4-chloro-\(N\)-(pyrazol-3-yl)carbamothioyl)deacetylcolchicine (56)

Compound 56 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 3-aminopyrazole (11 mg, 0.14 mmol) using the same procedure as that described for compound 59. Yellow solid (26 mg, 0.050 mmol, 72% yield).

\([\alpha]_D^{25} +73.95 (c = 0.119, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 12.64 (1H, s), 10.66 (1H, s), 10.39 (1H, br s), 7.73 (1H, t, \(J = 2.0\) Hz), 7.18 (1H, d, \(J = 10.7\) Hz), 7.05 (1H, d, \(J = 10.7\) Hz), 6.98 (1H, s), 5.96 (1H, s), 4.88–4.81 (1H, m), 3.93 (3H, s), 3.90 (3H, s), 3.89 (3H, s), 3.63 (3H, s), 3.19–3.14 (1H, m), 2.30–2.16 (2H, m), 2.00–1.90 (1H, m). HR-ESI-MS: calcd for \(C_{24}H_{26}ClN_4O_5S\) [M+H]\(^+\), 517.1312; found, 517.1301; calcd for \(C_{24}H_{26}ClN_4O_5S\) [M+H+2]\(^+\), 519.1283; found, 519.1272.

Synthesis of 4-chloro-\(N\)-((1-methylpyrazol-3-yl)carbamothioyl)deacetylcolchicine (57)

Compound 57 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (30 mg, 0.069 mmol) and 3-amo\-1-methylpyrazole (13 mg, 0.14 mmol) using the same procedure as that described for compound 59. Yellow solid (32 mg, 0.060 mmol, 96% yield).

\([\alpha]_D^{25} +139.62 (c = 0.106, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 10.61 (1H, s), 10.20 (1H, br s), 7.66 (1H, d, \(J = 2.2\) Hz), 7.18 (1H, d, \(J = 10.7\) Hz), 7.05 (1H, d, \(J = 10.7\) Hz), 6.98 (1H, s), 5.92 (1H, s), 4.83–4.76 (1H, m), 3.92 (3H, s), 3.89 (3H, s), 3.63 (3H, s), 3.19–3.14 (1H, m), 2.29–2.16 (2H, m), 2.05–1.98 (1H, m). HR-ESI-MS: calcd for \(C_{25}H_{28}ClN_4O_5S\) [M+H]\(^+\), 531.1469; found, 531.1487; calcd for \(C_{25}H_{28}ClN_4O_5S\) [M+H+2]\(^+\), 533.1439; found, 533.1485.

Synthesis of 4-chloro-\(N\)-((5-methylpyrazol-3-yl)carbamothioyl)deacetylcolchicine (58)

Compound 58 was prepared from 4-chloro-deacetylcolchicine (12) (62 mg, 0.16 mmol) and 3-amo\-5-methylpyrazole (23 mg, 0.24 mmol) using the same procedure as that described for compound 45. Yellow solid (73 mg, 0.14 mmol, 86% yield).

\([\alpha]_D^{25} +78.89 (c = 0.199, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 12.36 (1H, s), 10.59 (1H, br s), 10.46 (1H, br s), 7.18 (1H, d, \(J = 10.7\) Hz), 7.06 (1H, d, \(J = 10.7\) Hz), 6.96 (1H, s), 5.73 (1H, s), 4.86–4.80 (1H, m), 3.92 (3H, s), 3.89

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications
This journal is © The Royal Society of Chemistry 2014
(6H, s), 3.62 (3H, s), 3.18-3.08 (1H, m), 2.27-2.16 (5H, m), 1.96-1.90 (1H, m).

HR-ESI-MS: calcd for C_{25}H_{28}^{35}ClN_{4}O_{5}S [M+H]^+, 531.1469; found, 531.1613; calcd for C_{25}H_{28}^{37}ClN_{4}O_{5}S [M+H+2]^+, 533.1439; found, 533.1595.

Synthesis of 4-chloro-N((1,2,4-triazol-3-yl)carbamothioyl)deacetylcolchicine (59)

To a stirred solution of 4-chloro-7-isothiocyanato-de(acetamide)colchicine (64) (72 mg, 0.17 mmol) in DMF (1 mL) was added 3-aminoo-1,2,4-triazole (17 mg, 0.20 mmol) at ambient temperature under argon atmosphere. The mixture was stirred for 2 h at 80 °C. After cooling to room temperature, CHCl_{3} was added. The whole mixture was washed with NaHCO_{3} aq., dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue purified by silica gel flash column chromatography (CHCl_{3}/MeOH) to afford compound 59 (27 mg, 0.053 mmol, 31% yield) as a yellow solid. [α]_{D}^{25}: -77.02 ° (c = 0.082, MeOH). 1H-NMR (400 MHz, DMSO- d_{6}): δ 10.49 (1H, brs), 8.10 (2H, brs), 7.72 (1H, brs), 7.19 (1H, d, J = 10.7 Hz), 7.09 (1H, s), 7.06 (1H, d, J = 10.7 Hz), 4.80-4.78 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.65 (3H, s), 3.17-3.13 (1H, m), 2.55-2.53 (1H, m), 2.21-2.03 (2H, m). HR-ESI-MS: calcd for C_{25}H_{28}^{35}ClN_{4}O_{5}S [M+H]^+, 518.1265; found, 518.1307; calcd for C_{25}H_{28}^{37}ClN_{4}O_{5}S [M+H+2]^+, 520.1235; found, 520.1282.

Synthesis of 4-chloro-N((1-methyl-1H1,2,4-triazol-3-yl)carbamothioyl)deacetylcolchicine (60)

Compound 60 was prepared from 4-chloro-7-isothiocyanato-de(acetamide)colchicine (64) (54 mg, 0.12 mmol) and 3-aminoo-1-methyl-1H1,2,4-triazole (15 mg, 0.14 mmol) using the same procedure as that described for compound 59. Yellow solid (42 mg, 0.079 mmol, 66% yield). [α]_{D}^{25}: +53.60 ° (c = 0.216, MeOH). 1H-NMR (400 MHz, DMSO- d_{6}): δ 11.17 (1H, s), 10.42 (1H, d, J = 6.6 Hz), 8.50 (1H, s), 7.19 (1H, d, J = 10.7 Hz), 7.06 (1H, d, J = 10.7 Hz), 6.95 (1H, s), 4.85-4.79 (1H, m), 4.32 (3H, s), 3.89 (6H, s), 3.85 (3H, s), 3.65 (3H, s), 3.17-3.15 (1H, m), 2.26-2.19 (2H, m), 2.05-2.00 (1H, m). HR-ESI-MS: calcd for C_{25}H_{27}^{35}ClN_{5}O_{5}S [M+H]^+, 532.1421; found, 532.1516; calcd for C_{25}H_{27}^{37}ClN_{5}O_{5}S [M+H+2]^+, 534.1392; found, 534.1474.

Synthesis of 4-chloro-N((1-methyl-1H1,2,4-triazol-5-yl)carbamothioyl)deacetylcolchicine
Compound 61 was prepared from 4-chloro-7-isothiocyanato-7-de(acetamide)colchicine (64) (81 mg, 0.18 mmol) and 5-amino-1-methyl-1H,2,4-triazole (22 mg, 0.22 mmol) using the same procedure as that described for compound 59. Yellow solid (42 mg, 0.079 mmol, 66% yield). $[\alpha]_{D}^{25} -49.09^\circ$ ($c = 0.265$, MeOH). 1H-NMR (400 MHz, DMSO-d_6): δ 10.96 (1H, s), 10.74 (1H, d, $J = 6.8$ Hz), 7.91 (1H, s), 7.19 (1H, d, $J = 10.7$ Hz), 7.06 (1H, d, $J = 10.7$ Hz), 6.99 (1H, s), 4.82-4.75 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.77 (3H, s), 3.63 (3H, s), 3.20-3.17 (1H, m), 2.24-2.19 (2H, m), 2.08-2.01 (1H, m). HR-ESI-MS: calculc for $C_{24}H_{27}O_5ClN_5O_5S$ [M+H]$^+$, 532.1421; found, 532.1477; calculc for $C_{24}H_{29}O_5ClN_5O_5S$ [M+H+2]$^+$, 534.1392; found, 534.1448.

Synthesis of N^1(5-methyl-1,2,4-triazol-3-yl)-1H-imidazole-1-carbothioamide

To a stirred solution of 3-amino-5-methyl-1,2,4-triazole (265 mg, 2.7 mmol) in MeCN (2.7 mL) was added 1,1'-thiocarbonyldiimidazole (481 mg, 2.7 mmol) at ambient temperature under argon atmosphere. After stirring for 2h, the precipitate was collected by filtration, washed with cold MeCN, and dried under reduced pressure to afford the desired material (377 mg, 1.8 mmol, 67% yield) as a yellow solid.

1H-NMR (400 MHz, DMSO-d_6): δ 8.41 (1H, t, $J = 1.1$ Hz), 8.26 (2H, br s), 7.83 (1H, t, $J = 1.5$ Hz), 7.05 (1H, dd, $J = 1.5$, 1.1 Hz), 2.12 (3H, s). ESI-MS m/z: 209 [M+H]$^+$.

Synthesis of 4-chloro-N^1((5-methyl-1,2,4-triazol-3-yl)carbamothioyl)deacetylcolchicine (62)

To a stirred solution of 4-chlorodeacetylcolchicine (12) (61 mg, 0.16 mmol) in DMF (2 mL) was added N^1(5-methyl-1,2,4-triazol-3-yl)-1H-imidazole-1-carbothioamide (36 mg, 0.17 mmol) at room temperature under argon atmosphere. The solution was stirred for 2 h at 60°C. After cooling to room temperature, Water was added to the reaction mixture and the whole mixture was extracted two times with AcOEt. The combined organic layers were washed with brine, dried over MgSO$_4$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl$_3$/MeOH) to afford compound 62. (46 mg, 0.088 mmol, 55% yield) as a yellow solid.
\([\alpha]^{25}_D: -64.44^\circ (c = 0.225, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 10.32 (1H, d, \(J = 7.3\) Hz), 8.06 (2H, br-s), 7.19 (1H, d, \(J = 10.7\) Hz), 7.07-7.04 (2H, m), 4.82-4.76 (1H, m), 3.92 (3H, s), 3.89 (6H, s), 3.64 (3H, s), 3.15 (1H, dd, \(J = 12.9, 5.4\) Hz), 2.60-2.53 (1H, m), 2.20 (3H, s), 2.18-1.99 (2H, m). HR-ESI-MS: calcd for \(C_{24}H_{27}^{35}CN_5O_5S \ [M+H]^+\), 532.1421; found, 532.1414; calcd for \(C_{24}H_{27}^{37}CN_5O_5S \ [M+H+2]^+\), 534.1392; found, 534.1376.

Synthesis of 3-isothiocyanato-5-methylisoxazole

A solution of 3-amino-5-methylisoxazole (326 mg, 3.3 mmol), thiophosgene (278 \(\mu\)l, 3.6 mmol) and \(Na_2CO_3\) aq. (769 mg in 4 mL, 7.3 mmol) in \(CH_2Cl_2\) (6.5 mL) was stirred for 3h at room temperature. Brine was added to the reaction mixture and the whole mixture was extracted two times with \(CHCl_3\). The combined organic layers were dried over \(MgSO_4\), filtered, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (\(CHCl_3/\text{MeOH}\)) to afford the title compound (255 mg, 1.8 mmol, 55% yield) as a yellow oil.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 5.97 (1H, t, \(J = 0.9\) Hz), 2.43 (3H, t, \(J = 0.9\) Hz). ESI-MS m/z: 141 [M+H]+.

Synthesis of 4-chloro-N-((5-methylisoxazol-3-yl)carbamothioyl)deacetylcolchicine (63)

Compound 63 was prepared from 4-chlorodeacetylcolchicine (12) (75 mg, 0.19 mmol) and 3-isothiocyanato-5-methylisoxazole (32 mg, 0.23 mmol) using the same procedure as that described for compound 20. Yellow solid (98 mg, 0.15 mmol, 80% yield).

\([\alpha]^{25}_D: -108.11^\circ (c = 0.244, \text{MeOH})\). \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 9.20 (1H, s), 7.17 (1H, d, \(J = 10.5\) Hz), 7.13 (1H, s), 7.05 (1H, d, \(J = 10.5\) Hz), 4.25-4.14 (1H, m), 3.93 (3H, s), 3.88 (6H, s), 3.54 (3H, s), 3.15 (1H, dd, \(J = 12.8, 4.8\) Hz), 2.28-2.12 (2H, m), 1.93 (3H, s), 1.91-1.83 (1H, m). HR-ESI-MS: calcd for \(C_{25}H_{27}^{35}CN_5O_6S \ [M+H]^+\), 532.1309; found, 532.1328; calcd for \(C_{25}H_{27}^{37}CN_5O_6S \ [M+H+2]^+\), 534.1280; found, 534.1323.

In vitro assay

Cell culture. Human lung cancer cell line A549 and human colorectal cancer cell lines, HT-29 and HCT116, were obtained from American Type Culture Collection (ATCC, USA). The cancer cell lines were continuously cultured at 37 \(^\circ\)C under 5% \(CO_2\) atmosphere in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL streptomycin (10% FBS/DMEM).

Cytotoxicity evaluation. A 50 µL volume (1000 cells) of an exponentially growing cell suspension was seeded into a 96-well microtiter plate and 50 µL of each drug at various concentrations was added 24 h after the seeding of the tumor cells. After incubation for 96 h at 37 °C, 10 µL of TetraColor ONE (Seikagaku Biobusiness Corporation, Tokyo, Japan) was added to each well and the plates were incubated further for 1 h at 37 °C. After incubation, optical density was measured at 450 nm with a microplate reader (Spectramax 384 Plus, Molecular Devices, CA), and the concentration causing 50% inhibition of cell proliferation (IC₅₀) was calculated by linear regression analysis of the linear portion of the growth curves.

Metabolic stability in mouse microsomes. BALB/c mouse hepatic microsomes were purchased from XenoTech, LLC (Lenexa, KS). The reaction mixture (0.5 mL) containing 0.25 mg/mL microsomal protein and 1 µmol/L test compound in 100 mmol/L phosphate buffer (pH 7.4) was preincubated for 5 min at 37 °C, and the reaction was started by adding 30 µL of NADPH-regenerating system solution (BD Gentest, Woburn, MA). The reaction mixture (50 µL) was sampled and the reaction was terminated by adding 150 µL of 1% formic acid at 0, 5, 10, 15, 30, and 60 min. All incubations were done in triplicate. The test compound in the reaction mixture was measured by LC-MS/MS using a Scherzo SM-C18 column (150 × 2.0 mm ID., Imtakt, Japan). The column temperature and the flow rate were 40 °C and 0.35 mL/min, respectively. Mobile phases A and B were acetonitrile and 2 mmol/L ammonium formate (pH 3.3), respectively. The gradient elution was as follows: mobile phase A was linearly increased from 15% to 95% over a period of 4 minutes, kept at 95% for the next 2 minutes, and then equilibrated at 15% for 5 minutes. Metabolic stability was calculated by the following formula (A).

\[
\text{Metabolic stability (mL/min/mg) = \frac{\text{slope of a semi-logarithmic plot of test compound concentration}}{\text{microsomal protein concentration (0.25 mg/mL)}} (A).}
\]

Tubulin polymerization assay. *In vitro* tubulin polymerization assays were done using a Tubulin Polymerization Assay Kit (Cytoskeleton, inc.). Lyophilized porcine microtubule protein was resuspended in G-PEM buffer (80 mM PIPES, pH 6.9, 0.5 mM EGTA, 2 mM MgCl₂, 1 mM GTP, 10% glycerol) to a final concentration of 4 mg/mL. Tubulin polymerization was monitored spectrophotometrically by the change in absorbance at 340 nm. The absorbance was measured at 1-min intervals for 45 min using SpectraMax
(Molecular device). The IC$_{50}$ for tubulin polymerization was defined as the concentration of compound that inhibited tubulin assembly by 50% compared to solvent-treated control at 5 min.

In vivo assay

Animals. Inbred specific-pathogen-free 5-week-old male BALB/C nude mice were purchased from Japan SLC, Inc. (Hamamatsu, Japan). The mice were kept in plastic cages and allowed free access to water and a standard diet (MF, Oriental Yeast Industry Co., Tokyo, Japan). Temperature and humidity were kept at 24±1 °C and 55±10%, respectively. In vivo antitumor experiments were performed according to our internal and ethics committee regulations.

Antitumor experiments. After transplanting HCT116 cells (2 × 106 cells/mouse) subcutaneously to the inguinal region of nude mice, the mice were grouped (3~5 mice/group) on the day when the estimated tumor volume calculated by the following formula (B) reached approximately 300 mm3 (Day 1). The derivatives were administered intravenously three times on days 1, 5, and 9. As negative control, 5% glucose/Tween 80/propylene glycol (85/10/5) was administered following the same administration schedule as that of the derivatives. The tumors were excised on Day 22 and tumor growth inhibition rate (IR (%), formula (C)) was calculated from the tumor weights.

Estimated tumor volume (mm3) = 1/2 × long diameter × short diameter × short diameter (B).

IR (%) = (1 – mean tumor weight in the tested group / mean tumor weight in the control group) × 100 (C).

Docking simulation

The modules in Maestro (the unified interface for all Schrödinger software) were used by default settings to search stable conformations of 4-chlorocolchicines in the colchicine binding site of tubulin. Firstly, to prepare the docking receptor, the α,β-tubulin complex merged with the DAMA-colchicine and GTPs (PDB code 1SA0, chain A and B) was processed using the Protein Preparation module in Maestro. The module assigned ionization states and hydrogens in the complex structure, and energy-minimized the hydrogens in the OPLS 2005 force field. Secondly, the Receptor Grid Generation module was used to create the receptor grid where 4-chlorocolchicines were docked. The grid box and center were set to default by using the DAMA-colchicine molecule in the
β-tubulin. The van der Waals scaling of the receptor was 1.0. Thirdly, the 3D structure of each 4-chlorocolchicine derivative was generated by the Ligprep 2.4 module, which produced a single low-energy and geometrically reasonable conformer using the OPLS 2005 force field. Finally, the Glide 5.6 module was used to dock the derivative (ligand) to the colchicine binding pocket. As a first step in the Glide SP docking mode, many new ligand conformations were generated through torsional variations of the each ligand 3D structure. For each conformer with default 0.8 van der Waals scaling, the Glide module performed an exhaustive search of possible positions and orientations over the receptor grid previously defined, and the energetically stable poses were taken through minimization in the OPLS 2005 force field. They were further evaluated and re-ranked using the Glide score, and top 25 poses for each ligand were outputted.

References