Supporting Information for:

Anti-bacterial glycosyl triazoles – Identification of an N-acetylglucosamine derivative with bacteriostatic activity against Bacillus

Helene Kuhn, Danielle Gutelius, Eimear Black, Christina Nadolny, Amit Basu*, and Christopher Reid*

Department of Chemistry, Brown University, Providence RI 02912; abasu@brown.edu

Department of Science and Technology, Bryant University, Providence RI 02917, creid@bryant.edu

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General experimental procedures</td>
<td>2</td>
</tr>
<tr>
<td>2. Ugi procedures and characterization data</td>
<td>3 - 15</td>
</tr>
<tr>
<td>3. GNT procedures and characterization data</td>
<td>16 - 31</td>
</tr>
<tr>
<td>4. Anti-microbial testing procedures and screening data</td>
<td>31 - 33</td>
</tr>
</tbody>
</table>
Synthesis

General Methods

Compounds were purchased from standard suppliers and used without further purification. Thin layer chromatography was carried out on Merck silica gel 60 F_{254} precoated glass plates. Spots were detected by UV light and immersion in p-anisaldehyde stain or potassium permanganate stain. Column chromatography was performed on Teledyne ISCO CombiFlash® Rf purification system using pre-packed RediSep Rf Gold® Normal-Phase Silica Flash cartridges and gradient elution or with DAVISIL® Chromatographic Silica Media LC60A 35-70 micron. Evaporation of solvents was performed under reduced pressure at 30-40 °C. NMR spectra were recorded on Bruker Avance III HD Ascend 600 MHz and Bruker Avance Ultra-Shield 400 MHz. 1H, 13C, COSY, HSQC and 13C-DEPT135 were referenced to residual solvent peaks. The coupling constants are given in [Hz] and chemical shifts in [ppm]. Electrospray ionization (ESI) and fast atom bombardment (FAB) mass spectra were obtained using JEOL JMS-600H double focusing magnetic sector mass spectrometer for HRMS and Thermo LCQ Deca XP Max ion trap mass spectrometer with Shimadzu HPLC system for LRMS in positive mode. The Ugi products as well as the glycosyl triazoles exist as mixtures of rotamers (and diastereomeric mixtures in the case of the triazoles), resulting in multiple peaks in the NMR spectra. Partial assignments are provided.
Figure S1 – Structure of Ugi products prepared for GNT synthesis. Percentage values correspond to isolated yields.
Isobutyraldehyde (0.23 mL, 2.50 mmol) was dissolved in MeOH (2.50 mL) and n-butylamine (0.25 mL, 2.50 mmol) was added and the solution was stirred for 15-20 minutes at room temperature. Propiolic acid (0.15mL, 2.50mmol) followed by n-butylisocyanide (0.26 mL, 2.50mmol) was added to the solution and stirred over night at room temperature. The solvent was evaporated in vacuo and the residue was purified by FC (20:1 DCM/ isopropylalcohol). A white-yellow solid was obtained. Yield 620mg (88 %, 2.00mmol).

1H NMR (400 MHz, CDCl$_3$) δ [6.61 (s) NH minor; 5.65 (s) NH major], [4.21 (d, J = 10.6 Hz) 4 minor; 4.04 (d, J = 10.1 Hz) 4 major, 1H], [3.67 – 3.55 (m,1H); 3.49 (m,1H), 10], [3.30 – 3.23 (m) 6 minor; 3.23 – 3.17 (m) 6 major, 2H], 3.17 (s, 1H, 1), [2.50 (m)14 major; 2.42 – 2.28 (m)14 minor, 1H], 1.61 (m, 2H, 11), 1.52 – 1.39 (m, 2H, 7), 1.37 – 1.26 (m, 4H, 12, 8), 1.00 – 0.79 (m, 12H, 9, 13, 15, 16)ppm.

ESI-LRMS (m/z): calcd. for C$_{16}$H$_{28}$N$_2$O$_2$ + H: 281.22; found 281.57.

Isobutyraldehyde (0.09 mL, 1.00 mmol) was added under N$_2$ atmosphere to MeOH (0.25 mL) with molecular sieve. 2,2-Diphenylethylamine (0.20 g, 1.00mmol) was dissolved in MeOH (0.25 mL) and added to the reaction mixture which was stirred at room temperature for 20 minutes. After cooling down the solution to 0°C propiolic acid (0.06 mL, 1.00 mmol) followed by n-butylisocyanide (0.11 mL, 1.00 mmol) were rapidly added to the reaction mixture. The reaction was stirred at room temperature and tested by TLC for completion. Molecular sieves were filtered off through Celite which were rinsed with diethylether and then methanol. The solvent was evaporated in vacuo and the residue was washed with hexane. The residue was dispersed in MeOH and addition of water lead to product precipitation, which was filtered off and dried under high vacuum. A white-yellow solid was obtained. Yield 130mg (33 %, 0.33 mmol)

1H NMR (400 MHz, CDCl$_3$) δ = 7.34 – 7.14 (m, 11H, aromatic, 21), [4.78 – 4.67 (m) 6 minor; 4.65 – 4.47 (m) 6 major, 2H], [4.21 – 4.07 (m) 8 minor; 4.05 – 3.88 (m) 8 major, 1H], 3.65 (d, J=11.3, 1H, 7), 3.21 – 2.99 (m, 2H, 22), [2.74 – 2.62 (m) 9 major; 2.44 – 2.29 (m) 9 minor;
1H], 1.65 (s, 1H, 2), 1.42 – 1.18 (m, 4H, 27, 30), [0.97 (d, J=6.5) 13 major; 0.94 (d, J=6.5) 13 minor, 3H], 0.88 (t, J=7.2, 3H, 31), [0.83 (d, J=6.5) 14 major; 0.68 (d, J=6.6) 14 minor, 3H] ppm.

ESI-LRMS (m/z): calcd. for C_{26}H_{32}N_{2}O_{2} + H: 405.25; found 405.84.

aaea

(S)-(-)-1-phenylethylamine (0.38 mL, 3.00 mmol, 1.8 eq.) and isobutyraldehyde (0.18 mL, 2.00 mmol, 1.2 eq) were added to MeOH (4.00 mL) at room temperature and stirred for 10 minutes. Propiolic acid (0.12 mL, 2.00 mmol, 1.2 eq.) was added and the reaction was stirred for 5 min. at room temperature, followed by addition of n-butylisocyanide (0.18 mL, 1.71 mmol, 1.0 eq.) and stirring at room temperature until completion was shown by TLC. The reaction mixture was extracted two times with hexane, the solvent was evaporated in vacuo and the residue was dispersed in ethylacetate. The organic layer was extracted with 1 M HCl, H_{2}O, saturated NaHCO_{3}, H_{2}O and brine (2x). The organic layer was dried with MgSO_{4}, the solvent was evaporated in vacuo and the residue was dried under high vacuum. The product was further purified by flash chromatography and gradient elution using DCM and isopropylalcohol. A clear syrup was obtained. Yield 190mg (35 %, 0.59 mmol).

{1H NMR (400 MHz, CDCl}_{3} \delta 7.79 (s, 20), [7.53 – 7.42 (m); 7.36 (m), 5H, aromatic], 5.94 (q, J = 7.1 Hz, 1H, 6), 3.37 (s, 1H, 2), 3.27 – 3.16 (m, 2H, 21), 3.10 (d, J = 11.1 Hz, 1H, 7), 2.81 – 2.64 (m, 1H, 10), 1.66 (d, J = 7.2 Hz, 3H, 8), 1.52 – 1.40 (m, 2H-23), 1.38 – 1.27 (m, 2H-24), 0.92 (t, J=7.3, 3H, 25), 0.72 (d, J = 6.6 Hz, 3H, 14), 0.13 – 0.01 (m, 3H, 15) ppm.

ESI-LRMS (m/z): calcd. for C_{20}H_{28}N_{2}O_{2} + H: 329.22; found 329.87.

aaea

Isobutyraldehyde (0.18 mL, 2.00 mmol, 1.0 eq.) was added to a solution of benzylamine (0.44 mL, 4.00 mmol, 2.00 eq.) in MeOH (4.00 mL) at room temperature and stirred for 10 minutes. Propiolic acid (0.13 mL, 2.00 mmol, 1.0 eq.) was added and the reaction was stirred for 5 min. at room temperature followed by addition of n-butylisocyanide (0.34 mL, 3.20 mmol, 1.6 eq.) and stirring at room temperature until completion was shown by TLC. The reaction mixture was
extracted two times with hexane, the solvent was evaporated in vacuo and the residue was dispersed in ethylacetate. The organic layer was extracted 1 M HCl, H2O, saturated NaHCO3, H2O and brine (2x). The organic layer was dried with MgSO4, the solvent was evaporated in vacuo and the residue was dried under high vacuum. The product was further purified by flash chromatography and gradient elution using DCM and isopropylalcohol. and a white-yellow syrup was obtained. Yield 30mg (54 %, 1.08 mmol). Rf (20:1 DCM/isopropylalcohol): 0.6.

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.16 (m, 5H, aromatic), [6.49 (s) NH major; 5.52 (s) NH minor], [4.99 (d, J = 16.0 Hz) 7 major; 4.76 (d, J=14.7) 7 minor; 4.73 (d, J=16.0) 7 major; 4.55 (d, J=14.8) 7 minor, 1H], [4.32 (d, J = 10.6 Hz) 6 minor; 4.15 – 3.99 (m) 6 major, 1H], [3.28 (s) 3 minor; 3.20 (s) 3 major, 1H], 3.16 – 2.96 (m, 2H, 18), 2.55 – 2.37 (m, 1H, 9), 1.44 – 1.33 (m, 2H, 21), 1.33 – 1.18 (m, 2H, 23), [0.97 (d, J=6.4) 13 minor; 0.93 – 0.81 (m) 13 major, 3H], 0.93 – 0.81 (m, 3H, 24), [0.77 (d, J=6.7) 14 minor; 0.65 (d, J=6.6) 14 major, 3H] ppm.

ESI-LRMS (m/z): calcd. for C19H26N2O2 + H: 315.21; found 315.61.

Isoamylamine (0.23 mL, 2.00 mmol, 1.0 eq.) was dissolved in MeOH (2.00 mL), isobutyraldehyde (0.27 mL, 3.00 mmol, 1.5 eq.) was added and the solution was stirred at room temperature for 10 minutes. Propiolic acid (0.13 mL, 2.00 mmol, 10.0 eq.) was added and the reaction mixture was stirred for 5 minutes, followed by addition of n-butylisocyanide (0.32 mL, 3.00 mmol, 1.5 eq.). The reaction mixture was stirred at room temperature until TLC showed completion. The methanolic solution was extracted 3x with hexane and the solvent was evaporated in vacuo. The residue was dispersed in EtOAc (15.00 mL) and the organic layer was extracted 3x H2O and 2x brine, the solvent was removed and the residue was purified by FC (20:1 DCM/ isopropylalcohol). A white-yellow syrup was obtained. Yield 480mg (82 %, 1.63 mmol).

1H NMR (400 MHz, Acetone-d6) δ [7.40 (s) NH minor; 7.28 (s) NH major], [4.40 (d, J=10.6) 6 minor; 4.34 (d, J=11.0) 6 major, 1H], [3.96 (s) 1 major; 3.86 (s) 1 minor, 1H], [3.80 – 3.63 (m); 3.61 – 3.42 (m); 3.36 – 3.08 (m), 2H, 7], [3.36 – 3.08 (m), 2H, 16], 2.46 – 2.22 (m, 1H, 9), 1.69 – 1.21 (m, 7H, 10, 15, 20, 21), 1.01 – 0.74 (m, 15H, 13, 14, 18, 19, 22) ppm.

ESI-LRMS (m/z): calcd. for C17H30N2O2 + H: 295.24; found 295.76.
To a solution of 4-methoxybenzylamine (10.00mL of 0.1M in MeOH, 2.00mmol) isobutyraldehyde (10.00mL of 0.1M in MeOH, 2.00mmol) was added and the solution was stirred for 30 min. at 40°C. N-butylisocyanide (10.00mL of 0.1M in MeOH, 2.00mmol) was added to the solution and stirred for 20 min. at 50°C. After addition of propiolic acid (10.00mL of 0.1M in MeOH, 2.00mmol) the reaction mixture was reflux for 3h. The solvent was evaporated in vacuo and the residue was dried under high vacuo at 40°C in a water-bath. For purification the residue was dissolved in MeOH and treated with activated charcoal and filtered off over Celite, the solvent was evaporated in vacuo and the residue was dried under high vacuum. A yellow syrup was obtained. Yield 680mg (99%, 1.97 mmol).

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \; \delta = [7.35 (s) \; \text{NH minor}; 7.32 – 7.27 (m) \; \text{aromatic}, 6.90 – 6.80 (m) \; \text{aromatic}, 6.81 – 6.73 (m), 4H, 4.93 (d, J=15.7) 6 \text{ major}; 4.65 (d, J=15.7) 6 \text{ major}; 4.49 (d, J=14.5) 6 \text{ minor}, 2H], [4.30 (d, J=10.6) 7 \text{ minor}; 4.01 (d, J=11.1) 7 \text{ major}, 1H], [3.78 (s) 25 \text{ major}; 3.75 (s) 25 \text{ minor}, 3H], [3.27 (s) 2 \text{ minor}; 3.23 (s) 2 \text{ major}, 1H], 3.18 – 2.92 (m, 2H, 19), 2.56 – 2.38 (m, 1H, 10), 1.42 – 1.32 (m, 2H, 22), 1.32 – 1.18 (m, 2H, 24), [0.96 (d, J=6.4) 15\text{minor}; 0.94 – 0.82 (m) 15 \text{ major}, 3H], 0.94 – 0.82 (m, 3H, 26), 0.75 (d, J=6.7) 16 \text{ minor}; 0.62 (d, J=6.6) 16 \text{ major}, 3H] \text{ ppm.}
\end{align*}
\]

ESI-LRMS (m/z): calcd. for C_{20}H_{28}N_{2}O_{3} + H: 345.22; found 345.48.

Propargylamine (0.13 mL, 2.00 mmol) was dissolved in MeOH (0.50 mL) and isobutyraldehyde (0.18 mL, 2.00 mmol) was added and the solution was stirred for 15-20 minutes at room temperature. The solution was cooled down to 0°C and MeOH (0.50 mL), followed by addition of propiolic acid (0.11 mL, 2.00 mmol) and n-butylisocyanide (0.25 mL, 2.00 mmol). The reaction mixture was stirred at room temperature until TLC showed completion. The methanolic solution was extracted 3x with hexane and the solvent was evaporated in vacuo. The residue was dissolved in water leading to a formation of white-yellow solid which was filtered off and rinsed with H_{2}O. The residue was dried under high vacuum. Yield 180mg (45%, 0.71mmol). R_f (20:1 DCM/isopropylalcohol): 0.59.

\[
\begin{align*}
\text{H NMR (400 MHz, Acetone-d_{6})} & \; \delta = [7.49 (s) \text{NH minor}; 7.25 (s) \text{NH major}], [4.70 – 4.51 (m); 4.55 – 4.30 (m); 4.27 – 4.13 (m); 4.11 – 3.95 (m); 3.93 – 3.70 (m); 3.68 – 3.50 (m); 3.45 – 3.23 (m); 3.10 – 2.90 (m); 2.88 – 2.60 (m); 2.50 – 2.30 (m); 2.20 – 2.00 (m); 1.90 – 1.70 (m); 1.60 – 1.40 (m); 1.30 – 1.20 (m); 0.90 – 0.70 (m); 0.70 – 0.50 (m)] \text{ ppm.}
\end{align*}
\]
3.88 (d, \(J=10.6 \)) 5 major; 3.88 (d, \(J=10.6 \)) 5 minor, 1H, [4.70 – 4.51 (m); 4.48 – 4.35 (m); 4.28 – 4.08 (m), 2H, 6], [3.32 – 3.17 (m); 3.17 – 3.05 (m), 1H, 15], 2.89 (s, 1H, 14), [2.40 – 2.30 (m) 7 minor; 2.29 – 2.14 (m) 7 major, 1H], [2.29 – 2.14 (m); 2.12 – 1.99 (m), 1H, 1], 1.54 – 1.42 (m, 2H, 17), 1.40 – 1.26 (m, 2H, 18), 1.12 – 0.68 (m, 9H, 9H, 10, 11, 19) ppm.

ESI-LRMS (m/z): calcd. for C\(_{14}\)H\(_{24}\)N\(_2\)O\(_2\) + H: 253.19; found 253.70.

Aglycone synthesis using optimized conditions: c-m.a-g.b-c.a

General procedure for c-m.a-g.b-c.a

Of each reactant- amine, aldehyde, acid and isocyanide- a 0.1 M solution in MeOH was prepared. Amine (5.00 mL of 0.1 M) and aldehyde (5.00 mL of 0.1 M) were stirred in a capped scintillation vial for 30 min. at 35-40°C. Then isocyanide (5.00 mL of 0.1 M) was added to this solution and the reaction mixture was stirred for additional 20 minutes at 50°C. Lastly the acid (5.00 mL of 0.1 M) was added and the reaction mixture was continuously stirred at 55°C for 3-5 h. The progress of the reaction was monitored using UV-light, \(p \)-anisaldehyde and potassium permanganate for visualization. When the reaction was finished the solvent was removed in vacuo and the crude product was dried under high vacuum. When the reaction ran to completion according to the TLC, an NMR and ESI-LRMS was obtained of the crude product and depending on purity, the crude product was either pure enough for the next reaction or it was purified using a silica and/or basic alumina plug. In case of incomplete reaction the solvent was removed in vacuo and the residue was dried under high vacuum for at least 30 minutes to ensure that all methanol was evaporated. The dried residue was dissolved in a minimum amount of solvent and purified using a silica or basic alumina plug. The most common solvents used for the silica plug were 20:1 DCM/MeOH, 20:1 DCM/EtOAc and 40:1 DCM/EtOAc. After purification the fractions of interest were tested by MS-ESI, combined and after the removal of solvent, the product was dried under high vacuum and analyzed by NMR.

caba

Yield: 77mg (45%, 0.23 mmol), white-yellow solid

\(R_f \) (20:1 DCM/isoproplalcohol): 0.59

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.74 \) (d, \(J=15.4 \), 1H, 5), [7.62 – 7.49 (m); 7.45 – 7.31 (m), 5H, aromatic], 7.06 (d, \(J=15.4 \), 1H, 8), 6.32 (s, \(NH-23 \)), [4.63 – 4.51 (m); 4.16 (d, \(J=2.5 \)); 4.11 (d, \(J=2.5 \)), 3H, 12, 13], 3.32 – 3.08 (m, 2H, 22), 2.45 – 2.28 (m, 2H, 16, 17), 1.52 – 1.37 (m, 2H, 24), 1.31 (m, 2H, 25), 1.00 (d, \(J=3.5 \), 3H, 20), 0.98 (d, \(J=3.7 \), 3H, 21), 0.88 (t, \(J=7.3 \), 3H, 26) ppm.

ESI-LRMS (m/z): calcd. for C\(_{21}\)H\(_{38}\)N\(_2\)O\(_2\) + H: 341.22; found 341.82.
Yield: 160mg (94%, 0.47 mmol), yellow syrup

R_f (20:1 DCM/isopropylalcohol): 0.57

^1^H NMR (400 MHz, CDCl_3) δ = 7.52 – 7.27 (m, 5H, aromatic), 6.19 – 5.97 (m, NH-21), 5.62 – 5.49 (m, 1H, 7 or 8); [4.53 – 4.48 (m); 4.43 – 4.38 (m), 1H, 7 or 8], [4.55 (d, J=11.1); 4.47 (d, J=11.1); 3.42 (d, J=10.7), 1H, 13], [4.42 (d, J=2.7); 4.38 (d, J=1.2); 4.33 (d, J=2.6); 4.18 (d, J=2.5); 4.13 (d, J=2.4); 3.96 (d, J=2.5); 3.91 (d, J=2.5); 3.83 (d, J=2.5); 3.78 (d, J=2.5); 3.63 (d, J=2.5); 3.58 (d, J=2.5), 2H, 12], [3.31 – 3.01 (m); 2.93 – 2.83 (m); 2.66 – 2.55 (m), 2H, 22], [2.41 (t, J=2.5); 2.25 (t, J=2.4); 2.16 (t, J=2.5); 1H, 17], [2.38 – 2.26 (m); 2.23 – 2.17 (m), 1H, 15], 1.56 – 1.21 (m, 4H, 23, 24), 1.13 – 0.48 (m, 9H, 18, 19, 25) ppm.

ESI-LRMS (m/z): calcd. for C_{20}H_{28}N_{2}O_{3} + H: 345.22; found 345.47.

Yield: 160mg (71%, 0.36 mmol), white-yellow solid

R_f (20:1 DCM/isopropylalcohol): 0.66

^1^H NMR (400 MHz, Acetone-d_6) δ [7.97 – 7.82 (m); 7.56 – 7.44 (m); 7.44 – 7.27 (m); 7.25 – 7.08 (m), 5H, aromatic, NH-18], [5.02 (d, J=2.5); 4.98 (d, J=2.6); 4.89 – 4.75 (m); 4.76 – 4.62 (m); 4.56 (d, J=2.6); 4.54 (d, J=2.5); 4.52 (d, J=2.5); 4.50 (d, J=2.5), 2H, 11], [3.65 (d, J=10.4) 12 major; 3.59 (d, J=10.0) 12 minor, 1H], [3.34 – 3.13 (m) 21 major; 3.14 – 3.03 (m) 21 minor, 2H], [2.66 (t, J=2.5) 16 major; 2.62 (t, J=2.5) 16 minor; 2.60 (t, J=2.5) 16 minor, 1H], 2.51 – 2.30 (m, 1H, 15), 1.58 – 1.39 (m, 2H, 22), 1.42 – 1.23 (m, 2H, 23), 1.19 – 1.04 (m, 3H, 19), [1.00 (d, J = 6.5 Hz) 20 major; 0.96 – 0.78 (m) 20 minor, 3H], 0.96 – 0.78 (m, 3H, 24) ppm.

ESI-LRMS (m/z): calcd. for C_{19}H_{25}IN_{2}O_{2} + H: 441.10; found 441.40.
gaba

Yield: 128mg (87%, 0.44 mmol), yellow solid

\(R_f \) (20:1 DCM/isopropylalcohol): 0.63

\(^1\text{H NMR} \) (400 MHz, Acetone-\(d_6 \)) \(\delta \) [7.40 (s) \text{NH minor}; 7.12 (s) \text{NH major}], 4.64 – 4.59 (m, 1H, 7), [4.59 – 4.54 (m); 4.48 (d, \(J=2.5 \)); 4.44 (d, \(J=2.4 \)); 4.29 (d, \(J=2.4 \)); 4.25 (d, \(J=2.4 \)); 4.14 (d, \(J=2.5 \)); 4.09 (d, \(J=2.4 \)), 2H, 6], 3.27 – 3.08 (m, 2H, 18), 2.79 (t, \(J=2.5 \) Hz, 1H, 13), 2.49 – 2.31 (m, 2H, 2), 2.29 – 2.11 (m, 2H, 5, 11), 1.46 (m, 2H, 19), 1.39 – 1.25 (m, 2H, 20), 1.04 – 0.84 (m, 15H, 8, 9, 14, 15, 21) ppm.

ESI-LRMS (m/z): calcd. for \(\text{C}_{17}\text{H}_{30}\text{N}_2\text{O}_2 + \text{H} \): 295.24; found 295.78.

haba

Yield: 111mg (83%, 0.42 mmol), yellow solid

\(R_f \) (20:1 DCM/isopropylalcohol): 0.65

\(^1\text{H NMR} \) (400 MHz, Acetone-\(d_6 \)) \(\delta \) [7.41 (s) \text{NH minor}; 7.15 (s) \text{NH major}], 4.60 – 4.55 (m, 1H, 7), [4.65 – 4.60 (m); 4.50 – 4.41 (m); 4.31 – 4.20 (m); 4.15 (d, \(J=2.5 \)); 4.10 (d, \(J=2.5 \)), 2H, 6], 3.28 – 3.06 (m, 2H, 16), 2.79 (t, \(J=2.5 \) Hz, 1H, 11), 2.65 – 2.43 (m, 2H, 2), 2.32 – 2.16 (m, 1H, 10), 1.47 (m, 2H, 17), 1.39 – 1.25 (m, 2H, 18), 1.14 – 1.02 (m, 3H, 5), 1.03 – 0.82 (m, 9H, 14, 15, 19) ppm.

ESI-LRMS (m/z): calcd. for \(\text{C}_{15}\text{H}_{26}\text{N}_2\text{O}_2 + \text{H} \): 267.21; found 267.69.
iaba

Yield: 115mg (86%, 0.43 mmol), yellow syrup

R_f (20:1 DCM/isopropylalcohol): 0.63

1H NMR (400 MHz, Acetone-d_6) δ [7.45 (s) NH minor; 7.34 (s) NH major], 4.59 (d, $J=11.0$ Hz) 7 major; 3.65 (d, $J=10.5$) 7 minor, 1H], [4.38 (d, $J=4.8$) 2 major; 4.34 (d, $J=4.8$) 2 minor, 2H], [4.67 (d, $J=2.5$); 4.62 (d, $J=2.5$); 4.55 (d, $J=2.5$); 4.51 (d, $J=2.5$); 4.31 – 4.27 (m); 4.24 (d, $J=2.5$); 4.14 (d, $J=2.5$); 4.09 (d, $J=2.5$), 2H, 6], 3.57 (t, $J=4.8$ Hz, 1H, 5), 3.33 – 3.06 (m, 2H, 16), 2.92 – 2.75 (m, 1H, 11), [2.45 – 2.32 (m) 9 minor; 2.32 – 2.17 (m) 9 major, 1H], 1.47 (m, 2H, 17), 1.42 – 1.24 (m, 2H, 18), 1.06 – 0.80 (m, 9H, 12, 13, 19) ppm.

ESI-LRMS (m/z): calcd. for C$_{14}$H$_{24}$N$_2$O$_3$ + H: 269.19; found 269.47.

jaba

Yield: 42mg (25%, 0.13mmol), yellow syrup

R_f (10:1 DCM/MeOH): 0.83

1H NMR (400 MHz, CDCl$_3$) δ = [7.32 – 7.27 (m); 7.13 – 7.07 (m); 7.04 – 6.97 (m) 3H, aromatic], 6.11 (s, NH-16), 4.47 (d, $J=11.1$, 1H, 6), [4.39 (d, $J=2.5$); 4.34 (d, $J=2.5$); 4.01 (d, $J=2.5$); 3.96 (d, $J=2.5$), 2H, 5], 3.94 – 3.91 (m, 2H, 3), 3.26 – 3.09 (m, 2H, 20), 2.33 (t, $J=2.5$, 1H, 13), 2.32 – 2.22 (m, 1H, 9), 1.48 – 1.35 (m, 2H, 21), 1.35 – 1.19 (m, 2H, 22), 1.04 – 0.78 (m, 9H, 14, 15, 23) ppm.

ESI-LRMS (m/z): calcd. for C$_{18}$H$_{26}$N$_2$O$_2$S + H: 335.18; found 335.70.
kaba

Yield: 57mg (36%, 0.18mmol), yellow syrup

1H NMR (400 MHz, CDCl$_3$) δ [8.95 – 8.76 (m); 8.71 (dd, J=4.9, 1.7); 7.99 – 7.84 (m); 7.41 – 7.35 (m), 4H, aromatic], 6.58 (s, NH$_{18}$), 4.38 – 4.26 (m, 1H, 7), [4.53 – 4.37 (m); 3.98 – 3.91 (m); 3.91 – 3.86 (m), 2H, 8], 3.29 – 3.21 (m, 2H, 5), 2.65 – 2.49 (m, 1H, 11), 2.30 (t, J = 2.4 Hz, 1H-19), 1.55 – 1.42 (m, 2H-21), 1.39 – 1.26 (m, 2H-22), 1.08 (d, J=6.5, 3H, 15), 1.02 (d, J=6.3, 3H, 16), 0.92 (t, J = 7.3 Hz, 3H, 23) ppm.

ESI-LRMS (m/z): calcd. for C$_{18}$H$_{25}$N$_3$O$_2$ + H: 316.20; found 317.79.

maba

Yield: 142mg (91%, 0.46 mmol), yellow solid

1H NMR (400 MHz, Acetone-d_6) δ (7.80 (s, NH$_{12}$-minor), 7.34 (s, NH$_7$-minor), 7.24 (s, NH$_{12}$-major), 7.11 (s, NH$_7$-major), [4.58 (d, J = 10.9 Hz) 5-major; 4.00 – 3.93 (m) 5-minor, 1H], [4.70 (d, J = 2.6 Hz); 4.66 (d, J = 2.6 Hz); 4.49 (d, J=2.6); 4.44 (d, J=2.6); 4.29 – 4.22 (m); 4.21 (d, J=2.5); 3.94 – 3.85(m), 2H, 6], 4.29 – 4.22 (m, 2H, 3), 3.33 – 3.03 (m, 2H, 19), 2.86 (t, J=2.5, 1H, 16), [2.43 – 2.31 (m) 9 minor; 2.31 – 2.15 (m) 9 major, 1H], [1.96 (s) 18 minor; 1.95 (s) 18 major, 3H], 1.55 – 1.40 (m, 3H, 20), 1.41 – 1.26 (m, 3H, 21), [1.02 (d, J=6.6) 14 minor; 0.93 (d, J=6.6) 14 major, 3H], [0.99 (d, J=6.6) 15 minor; 0.91 – 0.84 (m) 15 major, 3H], 0.91 – 0.84 (m, 3H, 22) ppm.

ESI-LRMS (m/z): calcd. for C$_{16}$H$_{27}$N$_3$O$_3$ + H: 310.21; found 310.87.
fcba

Yield: 173mg (81%, 0.41 mmol), yellow syrup

1H NMR (400 MHz, Acetone-d_6) $\delta = [7.95 - 7.85 (m); 7.58 - 7.46 (m); 7.46 - 7.33 (m); 7.26 - 7.12 (m), 4H, aromatic], 7.05 (s, NH-18), [4.75 - 4.71 (m); 4.68 (d, $J=2.6$); 4.65 (d, $J=2.6$); 4.63 - 4.57 (m); 4.57 - 4.52 (m); 4.34 (d, $J=2.5$); 4.30 (d, $J=2.5$), 2H, 11], 3.98 - 3.79 (m, 1H, 12), 3.32 - 3.07 (m, 2H, 20), 2.63 (t, $J=2.5$, 1H, 16), [2.17 - 2.06 (m); 2.02 - 1.97 (m); 1.96 - 1.87 (m), 2H, 15], 1.58 - 1.41 (m, 2H, 21), 1.41 - 1.24 (m, 2H, 22), 1.11 - 1.00 (m, 3H, 19), 0.98 - 0.84 (m, 3H, 23) ppm.

ESI-LRMS (m/z): calcd. for C$_{18}$H$_{23}$N$_2$O$_2$ + H: 427.08; found 427.29.

feba

Yield: 191mg (84%, 0.42 mmol), yellow syrup

1H NMR (400 MHz, Acetone-d_6) $\delta = [8.03 - 7.82 (m); 7.57 - 7.46 (m); 7.45 - 7.32 (m); 7.28 - 7.12 (m), 4H, aromatic], 7.08 (s, NH-18), [4.75 - 4.72 (m); 4.71 - 4.67 (m); 4.66 (d, $J=2.6$); 4.64 - 4.57 (m); 4.57 - 4.54 (m); 4.31 (d, $J=2.6$); 4.27 (d, $J=2.5$), 2H, 11], [4.02 - 3.91 (m); 3.94 - 3.86 (m) 1H, 12], 3.34 - 3.07 (m, 2H, 20), 2.64 (t, $J=2.5$, 1H, 16), 1.99 - 1.81 (m, 2H, 15), 1.57 - 1.22 (m, 8H, 19, 21, 22, 24), 1.00 - 0.81 (m, 6H, 23, 25) ppm.

ESI-LRMS (m/z): calcd. for C$_{20}$H$_{27}$N$_2$O$_2$ + H: 455.12; found 455.55.
Yield: 140mg (63%, 0.31 mmol), yellow syrup

\[^1\text{H\ NMR\ (400\ MHz,\ Acetone-}\text{d}_6\text{)}\ \delta = [7.98 – 7.84\ (m); 7.55 – 7.45\ (m); 7.46 – 7.32\ (m); 7.29 –
7.06\ (m)\ 4H,\ aromatic],\ [4.74 – 4.70\ (m); 4.68\ (d,\ J=2.3); 4.66\ (d,\ J=2.7); 4.62\ (d,\ J=2.5); 4.58\ (d,\ J=2.5); 4.55 – 4.52\ (m); 4.25\ (d,\ J=2.6); 4.21\ (d,\ J=2.6),\ 2H,\ 11],\ 4.11 – 3.96\ (m,\ 1H,\ 12),
3.32 – 3.04\ (m,\ 2H,\ 22),\ 2.66 – 2.59\ (m,\ 1H,\ 16),\ 2.01 – 1.66\ (m,\ 3H,\ 14,\ 17),\ 1.62 – 1.41\ (m,\ 2H,\ 23),
1.44 – 1.23\ (m,\ 2H,\ 24),\ 1.10 – 0.71\ (m,\ 9H,\ 20,\ 21,\ 25)\ ppm.\]

ESI-LRMS (m/z): calcd. for C\textsubscript{20}H\textsubscript{27}N\textsubscript{2}O\textsubscript{2} + H: 455.12; found 455.30.

\[fgba\]

Yield: 180mg (75%, 0.37 mmol), white-yellow solid

\[^1\text{H\ NMR\ (400\ MHz,\ Acetone-}\text{d}_6\text{)}\ \delta = [7.95 – 7.82\ (m); 7.55 – 7.44\ (m); 7.40 – 7.27\ (m); 7.23 –
7.09\ (m),\ 4H,\ aromatic],\ 7.45 – 7.40\ (m,\ \textbf{NH-18}),\ [5.07\ (d,\ J=2.5); 5.03\ (d,\ J=2.6); 4.91 – 4.74\ (m); 4.59\ (d,\ J=2.5); 4.56\ (d,\ J=2.5); 4.55\ (d,\ J=2.4); 4.52\ (d,\ J=2.5),\ 2H,\ 13],\ [4.91 – 4.74\ (m); 3.75 – 3.52\ (m),\ 1H,\ 12],\ 3.33 – 3.03\ (m,\ 2H,\ 22),\ 2.70 – 2.58\ (m,\ 1H,\ 21),\ 2.34 – 2.12\ (m,\ 1H,\ 15),\ 1.87 – 1.00\ (m,\ 14H,\ 19,\ 20,\ 23,\ 24,\ 25,\ 26,\ 27),\ 0.99 – 0.81\ (m,\ 3H,\ 28)\ ppm.\]

ESI-LRMS (m/z): calcd. for C\textsubscript{22}H\textsubscript{29}N\textsubscript{2}O\textsubscript{2} + H: 481.14; found 481.10
Yield: 151mg (73%, 0.37 mmol), yellow syrup

R_f (20:1 DCM/isopropylalcohol): 0.57

1H NMR (400 MHz, CDCl$_3$) $\delta = [7.90 – 7.78 \text{ (m)}; 7.42 – 6.96 \text{ (m)}; 6.74 – 6.60 \text{ (m)}, 14\text{H, aromatic}]$, $[6.17 – 6.13 \text{ (m)}; 6.02 \text{ (t, } J=5.4, \text{ NH-20}]$, $[5.61 \text{ (s) 6 minor}; 5.56 \text{ (s) 6 major}, 1\text{H}]$, $[5.11 \text{ (d, } J=16.6); 4.64 \text{ (d, } J=16.5), 2\text{H, 7}]$, $[4.48 \text{ (d, } J=5.9); 4.44 \text{ (d, } J=5.9); 4.39 \text{ (d, } J=5.6); 4.37 – 4.33 \text{ (m)}, 2\text{H, 19}]$, $[3.89 \text{ (s) 29 minor}; 3.73 \text{ (s) 29 major}, 3\text{H}]$, $[3.22 \text{ (s) 1 minor}; 3.09 \text{ (s) 1 major}, 1\text{H}]$ ppm.

ESI-LRMS (m/z): calcd. for C$_{26}$H$_{24}$N$_2$O$_3$ + H: 413.9; found 413.33.
General 'click'-procedure for Ugi-N-glucosamine-triazoles: BL.a-m.a-g.a-h.a-b

Figure S2 – Structure of GNTs and tested for anti-bacterial activity. Percentage values correspond to isolated yields for the glycosyl azide – alkyne coupling.

The reactions were run using stock solutions of the 2-N-Acetylamido-2-deoxy-β-D-glucopyranosyl azide (1), the catalyst system and the solvent mixture.

For a 20 mg scale of (4) (0.081mmol):

The Ugi-compound (0.11mmol, 1.3 eq.) was dissolved in a 1:1 MeCN/H2O solution (4.05 mL, 2.0mM). To this solution CuSO₄·H₂O (10.00 µL of 0.8M CuSO₄·H₂O in H₂O, 10mol%, 8.10µmol) and Cu-powder (10.00 µL of a 5.7M Cu-powder solution in H₂O, 0.06mmol, 0.7 eq.) was added. Lastly 1 (71.00µL of a 1.1M solution in H₂O, 0.08mmol) was added and the reaction was stirred at 45°C in a capped scintillation vial in an aluminum block until TLC showed completion. For the TLC the following solvents could be applied: 5:1 DCM/MeOH, 3:1

DCM/MeOH or 2:1 DCM/MeOH. For visualization of the TLC p-anisaldehyde stain was used. After completion of the reaction 3-4 spatulas of CupriSorb™ and H₂O (2-3.00mL) were added and the mixture was slowly stirred at room temperature overnight. The content was carefully transferred to a new scintillation vial, avoiding the CupriSorb™ beads. H₂O, MeOH or DCM was used for rinsing the CupriSorb™ beads and the reaction vial and the MeCN/H₂O solvent mixture was removed using a centrifan. The residue was dissolved in 20:1 DCM/MeOH (1-2 mL) and purified with a silica-plug, where after approximately two test tubes the solvent was switched to either 3:1 or 5:1 DCM/MeOH. The residue left in the vial was treated with 3:1 or 5:1 DCM/MeOH and put on the same silica-plug, to elute the product. Collected fractions were tested with ESI-MS and TLC for any residual alkyne (20:1 DCM/MeOH, potassium permanganate stain) or 1 (3:1 or 5:1 DMC/MeOH, p-anisaldehyde stain). Clean product fractions were collected, the solvent residue was removed in vacuo and the product was dried under high vacuum.

Bi.aaa

Yield: 17mg (78%, 0.03mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.59 (s); 8.58 (s); 8.54 (s), 1H, triazole-9], [5.85 (d, J=9.8); 5.83 (d, J=9.8); 5.79 (d, J=9.7); 5.77 (d, J=9.5), 1H, 1], [4.56 (d, J=11.0); 4.51 (d, J=10.6); 4.36 (d, J=10.6), 1H, 12], [4.27 – 4.05 (m, 1H, 2)], [3.96 – 3.88 (m); 3.83 – 3.73 (m), 2H, 6], [3.74 – 3.65 (m, 1H, 3), 3.66 – 3.54 (m, 2H, 4, 5), [3.74 – 3.65 (m); 3.40 – 3.12 (m), 2H, 18], [3.40 – 3.12 (m, 2H, 14), [2.50 – 2.41 (m), 22 minor; 2.41 – 2.33 (m), 22 major, 1H], [1.80 (s); 1.79 (s); 1.78 (s), 3H, 8], [1.74 – 1.61 (m); 1.60 – 1.42 (m), 2H, 19], [1.60 – 1.42 (m, 2H, 15), 1.43 – 1.27 (m, 2H, 16), [1.43 – 1.27 (m); 1.25 – 1.16 (m), 2H, 20], 1.06 – 0.72 (m, 12H, 23, 24, 21, 17) ppm.

13C NMR (151 MHz, MeOD) δ [173.3, 173.1, 171.7, 171.6, 164.6, 164.1- 7, 11, 13], [144.6, 144.4- 10], [128.2, 127.9, 126.9- 9], [88.9, 88.8, 88.3, 88.26- 1], [81.4, 81.3- 4, 5], [75.5, 75.3, 75.0- 3], [71.2, 71.15- 4, 5], [68.2, 67.9, 62.3, 62.2, 62.16- 6], [57.6, 57.3, 56.9, 56.87, 44.4, 44.1- 18], [40.1, 40.09, 40.0- 14, 18], [33.2, 33.1, 32.3, 32.2- 15], [30.8, 30.77- 19], [28.6, 28.4, 28.3, 28.2- 22], [22.6, 22.53, 22.52, 21.51, 21.4, 21.1, 21.08- 20, 16], [20.0, 19.7, 19.2, 19.1, 18.8- 23, 24], [14.2, 14.1, 14.05, 14.03- 17, 21] ppm.

ESI(+)-HRMS (m/z): calcd. for C₂₄H₄₂N₆O₇ + H: 527.3193; found 527.3175.
Yield: 34mg (85%, 0.05mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.59 (s) 9 major; 8.37 (s) 9 major, 8.23 (s) 9 minor; 8.17 (s) 9 minor, 1H], 7.41 – 6.97 (m, 10H, 23-34), 5.88 – 5.73 (m, 1H, 1), 4.79 – 4.71 (m, 1H, 19), [4.46 - 4.34 (m); 4.04 - 3.96 (m), 2H, 18], [4.32 (d, J=10.7); 4.27 – 4.04 (m), 1H, 12], 4.27 – 4.04 (m, 1H, 2), [3.93 (dd, J=12.5, 2.1); 3.80 (dd, J=12.2, 5.1), 2H, 6], 3.77 – 3.65 (m, 1H, 3), 3.65 – 3.54 (m, 2H, 4, 5), [3.23 – 3.01 (m); 2.84 – 2.58 (m), 2H, 14], 2.36 (m, 1H, 20), [1.80 (s); 1.79 (s); 1.75 (s), 3H, 8], 1.45 – 1.23 (m, 4H, 15, 16), 1.04 – 0.65 (m, 9H, 22, 21, 17) ppm.

13C NMR (151 MHz, MeOD) δ [173.3, 173.1, 172.9, 171.0, 170.98, 170.92, 166.0, 165.5, 7, 11, 13], [144.7, 144.3, 144.0, 143.9, 143.8, 10], [129.7, 129.6, 129.5, 129.4, 129.38, 129.31, 129.28, 129.22, 23-34], [128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.56, 127.52, 127.4, 127.2, 9], [88.8, 88.7, 1], 81.4-81.2 (4 or 5), [75.6, 75.5, 75.2, 75.1, 3], [71.3, 71.2, 4 or 5], [69.1, 68.9, 12], [62.3, 62.2, 6], [57.3, 57.2, 56.9, 2], 51.3 (18), [48.8, 48.7, 48.5, 18, 19], [40.2, 40.1, 14], [32.14, 32.12, 32.0, 15], [29.1, 28.5, 28.4, 20], [22.6, 22.5, 8], [21.15, 21.10, 16], [20.0, 19.8, 19.7, 19.6, 19.4, 19.1, 18.8, 14.09, 14.06, 22, 21, 17] ppm.

FAB-HRMS (m/z): calcd. for $C_{34}H_{46}N_6O_7$ + Na: 673.3326; found 673.3310.
Bl.aeea

Yield: 15mg (63%, 0.03mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.73 \text{ (s);} 8.43 \text{ (s)}, 1H, \text{ triazole-9}], 8.50 \text{ (s, 29-NH)}, 7.53 - 7.05 \text{ (m, 5H, 21-25)}, 5.92 - 5.70 \text{ (m, 1H, 1)}, [5.92 - 5.70 \text{ (m); 5.47 - 5.22 \text{ (m), 1H, 18}], [5.47 - 5.22 \text{ (m); 4.47 \text{ (d, J}=10.7), 1H, 12}], [4.32 - 4.22 \text{ (m); 4.12 - 4.04 \text{ (m), 1H, 2}], [3.97 - 3.86 \text{ (m); 3.80 \text{ (dd, J}}=12.3, 4.6), 2H, 6], 3.75 - 3.67 \text{ (m, 1H, 3)], 3.66 - 3.56 \text{ (m, 2H, 4, 5)], [3.23 - 3.12 \text{ (m); 2.91 - 2.74 \text{ (m), 2H, 14}], 2.50 - 2.36 \text{ (m, 1H, 26)], [1.93 \text{ (d, J}=7.1); 1.86 - 1.71 \text{ (m), 3H, 19}], 1.86 - 1.71 \text{ (m, 3H, 8) 1.52 - 1.20 \text{ (m, 4H, 15, 16)}, 1.19 - 0.71 \text{ (m, 9H, 17, 27, 28)] ppm.}$

13C NMR (151 MHz, MeOD) $\delta = [173.7, 173.4, 173.3, 171.4, 171.35, 165.6, 164.5-7, 11, 13], [145.0, 144.96, 144.92, 143.0, 140.0-10], [129.6, 129.5, 129.3, 129.2-20], [128.8, 128.4, 127.6, 127.3-21-25], [127.6, 126.6-9], [88.8, 88.51-1], [81.4, 81.3-4 or 5], [75.5, 74.9-7, 11, 13], [145.0, 144.92, 144.96, 143.0, 140.0-10], [129.6, 129.5, 129.3, 129.2-20], [128.8, 128.4, 127.6, 127.3-21-25], [127.6, 126.6-9], [88.8, 88.51-1], [81.4, 81.3-4 or 5], [75.5, 74.9-7, 11, 13], [145.0, 144.92, 144.96, 143.0, 140.0-10], [129.6, 129.5, 129.3, 129.2-20], [128.8, 128.4, 127.6, 127.3-21-25], [127.6, 126.6-9], [88.8, 88.51-1], [81.4, 81.3-4 or 5], [75.5, 74.9-7, 11, 13], 14.1 (17)] ppm.

ESI(+)-HRMS (m/z): calcd. for C$_{28}$H$_{42}$N$_{6}$O$_{7}$ + H: 575.3193; found 575.3191.

Bl.aafa

Yield: 37mg (82%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.64 \text{ (s) 9 minor; 8.61 \text{ (s) 9 major; 8.49 \text{ (s) 9 minor, 1H}, 7.34 - 7.06 \text{ (m, 5H, 23-27)}, 5.83 - 5.74 \text{ (m, 1H, 1)}, [5.09 - 4.92 \text{ (m); 4.81 - 4.65 \text{ (m); 4.62 - 4.50 \text{ (m), 2H, 18}], [4.81 - 4.65 \text{ (m); 4.62 - 4.50 \text{ (m), 1H, 12}], 4.23 - 4.07 \text{ (m, 1H, 2)], [3.96 - 3.85 \text{ (m; 3.85 - 3.77 \text{ (m), 2H, 6)], 3.77 - 3.64 \text{ (m, 1H, 3)], 3.65 - 3.51 \text{ (m, 2H, 4, 5)], 3.20 - 2.84 \text{ (m, 2H, 14)], 2.53 - 2.39 \text{ (m, 1H, 20)], [1.80 \text{ (s); 1.79 \text{ (s); 1.69 \text{ (s); 1.65 \text{ (s), 3H, 8)], 1.50 - 1.25 \text{ (m, 4H, 15, 16)], 1.02 - 0.71 \text{ (m, 9H, 17, 21, 22)] ppm.}$

13C NMR (151 MHz, MeOD) $\delta = [173.3, 173.1, 171.4, 171.3, 165.2, 164.7-13, 11, 7], [144.5, 144.2-10], [139.2, 138.9-19], [129.19, 129.10, 129.07, 128.57, 128.52, 128.3, 127.9, 127.8, 127.2-9, 23-37], [88.84, 88.82-1], [81.37, 81.31-4 or 5], [75.3, 75.0-3], [71.29, 71.20-4 or 5], [68.8, 68.6-12], [62.23, 62.17-6], [57.6, 57.3-2], [47.4, 47.2-18], [40.1, 40.0-14], [32.23,
32.16-15, [29.0, 28.5-20], [22.6, 22.5-8], [21.13, 21.11-16], [20.0, 19.9, 19.7, 19.3, 19.1, 18.8, 14.1-22, 21, 17] ppm.

FAB-HRMS (m/z): calcd. for C_{27}H_{40}N_{6}O_{7} + Na: 583.2856; found 583.2815.

Blaaga

Yield: 31mg (71%, 0.06mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.58$ (s) 9 major; 8.52 (s) 9 major; 8.43 (s) 9 minor; 8.35 (s) 9 minor, 1H], 5.89 – 5.74 (m, 1H, 1), [4.57 – 4.46 (m) 12 major; (d, $J=10.6$) 12 minor, 1H], 4.27 – 4.05 (m, 1H, 2), [3.97 – 3.87 (m); 3.85 – 3.74 (m), 2H, 6], [3.85 – 3.74 (m); 3.42 – 3.14 (m), 2H, 23], 3.74 – 3.66 (m, 1H, 3), 3.65 – 3.55 (m, 2H, 4, 5), 3.42 – 3.14 (m, 2H, 14), [2.51 – 2.42 (m) 20 minor; 2.42 – 2.32 (m) 20 major, 1H], [1.80 (s); 1.79 (s); 1.78 (s) 3H, 8], 1.66 – 1.29 (m, 7H, 24, 25, 15, 16), 1.06 – 0.70 (m, 15H, 17, 21, 22, 26, 27) ppm.

13C NMR (151 MHz, MeOD) δ [173.3, 173.1, 171.7, 171.6, 171.5, 164.5, 163.9-7, 11, 13], [144.7, 144.5-10], [127.8, 126.9-9], [88.89, 88.82-1], [81.39, 81.34-4 or 5], [75.3, 75.0-3], 71.22 (4 or 5), [68.2, 67.9-12], [62.24, 62.20-6], [57.6, 57.3-2], [43.7, 42.9-23], [40.1, 39.9-14], 37.4 (24), [32.3, 32.2-15], [28.6, 28.0, 27.9-20, 25], [22.9, 22.88, 22.85, 22.61, 22.52-8, 17, 21, 22, 26, 27], [21.08, 21.06-16], [19.7, 19.1, 18.8, 14.04, 14.02-17, 21, 22, 26, 27] ppm.

FAB-HRMS (m/z): calcd. for C_{25}H_{44}N_{6}O_{7}: 563.3169; found 563.3152.

Blaaha

Yield: 41mg (85%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.63$ (s); 8.59 (s); 8.49 (s) 1H, 9], [7.30 – 7.21 (m); 7.09 – 6.99; 6.85 – 6.72 (m), 4H, 24, 25, 27, 28], 5.84 – 5.76 (m, 1H, 1), [5.04 – 4.89 (m); 4.67 (d,
J=14.8); 4.47 (d, J=14.8), 2H, 18], [4.64 (d, J=10.6); 4.51 (d, J=10.6), 1H, 12], 4.24 – 4.08 (m, 1H, 2), [3.96 – 3.85 (m); 3.83 – 3.77 (m), 2H, 6], 3.78 – 3.66 (m, 4H, 3, 19), 3.65 – 3.52 (m, 2H, 4, 5), 3.21 – 2.97 (m, 2H, 14), 2.57 – 2.39 (m, 1H, 20), [1.80 (s) 8 major; 1.78 (s) 8 major; 1.71 (s) 8 minor; 1.67 (s) 8 minor, 3H], 1.49 – 1.35 (m, 2H, 15), 1.37 – 1.24 (m, 2H, 16), 1.03 – 0.73 (m, 9H, 17, 21, 22) ppm.

13C NMR (151 MHz, MeOD) δ [173.3, 173.1, 171.5, 171.4, 171.37, 171.3, 165.1, 164.7, 160.16, 160.09- 7, 11, 13], [144.5, 144.3- 10], [131.2, 130.9- 23, 26], [130.3, 130.27, 129.8, 129.6- 24, 25, 27, 28], [128.2, 127.3- 9], [114.7, 114.4- 24, 25, 27, 28], 88.8 (1), [81.36, 81.31- 4 or 5], [75.3, 75.0- 3], [71.3, 71.2- 4 or 5], [68.75, 68.71, 68.53, 68.5- 12], [62.3, 62.22, 62.17- 6], [57.6, 57.3- 2], 55.6 (19), [46.8, 46.6- 18], [40.2, 40.0- 14], [32.2, 32.17, 32.15- 15], [28.9, 28.5- 20], [22.6, 22.5- 8], [21.12, 21.10- 16], [19.8, 19.1, 18.8, 14.1, 14.05- 17, 21, 22] ppm.

FAB-HRMS (m/z): calcd. for C28H42N6O8: 613.2962; found 613.2950.

B1.baba

Yield: 32mg (80%, 0.07 mmol), white solid

1H NMR (600 MHz, MeOD) δ = [7.98 (s); 7.92 (s), 1H, 9], 5.81 – 5.73 (m, 1H, 1), [4.85 – 4.79 (m); 4.79 – 4.65 (m), 2H, 11], [4.61 (d, J=10.8); 4.56 (d, J=10.8); 3.85 – 3.80 (m), 1H, 12], 4.24 – 4.11 (m, 1H, 2), [3.96 – 3.85 (m); 3.80 – 3.63 (m), 2H, 6], 3.80 – 3.63 (m, 1H, 3), 3.63 – 3.48 (m, 2H, 4, 5), [3.27 – 3.08; 3.08 – 2.93 (m, 2H, 14], 2.54 – 2.28 (m, 1H-20), [2.27 (s); 2.21 (s); 2.19 (s); 2.16 (s) 3H, 19], [1.77 (s) 8 major; 1.75 (s) 8 minor, 3H], 1.57 – 1.44 (m, 2H, 15), 1.44 – 1.26 (m, 2H, 16), 1.06 – 0.61 (m, 9H, 17, 21, 22) ppm.

13C NMR (151 MHz, MeOD) δ 175.3, 175.1 (7/13/18), 173.4, 173.36 (7/13/18), 172.2, 172.1, 172.06 (7/13/18), 145.8 (10), 123.2, 122.8 (9), 88.30, 88.25, 88.0 (1), 81.46, 81.40, 81.3 (5 or 4), 76.1, 75.81, 75.7 (3), 71.6, 71.4 (5 or 4), 69.49, 69.44, 69.38, 69.32 (12), 64.96, 64.92 (12), 62.56, 62.54, 62.4 (6), 57.1, 56.9, 56.5 (2), 42.4, 42.02 (11), 40.38, 40.34, 40.31, 40.23, 40.21, 40.18 (14), 39.6 (11), 32.4, 32.38, 32.32 (15), 29.6, 28.6, 28.5 (20), 22.8, 22.7, 22.55, 22.50, 22.4 (19/8), 21.28, 21.26, 21.21 (16), 20.2, 20.1 (22/21/17), 19.8, 19.79, 19.74 (22/21/17), 19.37, 19.31 (22/21/17), 14.24, 14.21, 14.1 (22/21/17) ppm.

ES(+)I-HRMS (m/z): calcd. for C22H38N6O7: H: 499.2880; found 499.2873.
Yield: 39mg (82%, 0.07mmol), white solid
1H NMR (600 MHz, MeOD) δ = [7.99 (s) 9 major; 7.90 (s) 9 minor, 1H], [7.71 – 7.53 (m); 7.46 – 7.32 (m); 7.28 – 7.13 (m), 7H, 19, 20, 22-26], 5.83 – 5.73 (m, 1H, 1), 5.10 – 4.79 (m, 2H, 11), [4.74 (d, J=10.8); 4.70 (d, J=10.8); 4.10 (d, J=10.5), 1H, 12], 4.25 – 4.12 (m, 1H, 2), [3.93 – 3.83 (m); 3.78 – 3.62 (m), 2H, 6], [2.61 – 2.52 (m) 27 minor; 2.52 – 2.45 (m) 27 minor; 2.44 – 2.31 (m) 27 major, 1H], [1.77 (s) 8 minor; 1.73 (s) 8 minor; 1.70 (s) 8 major; 1.59 (s) 8 major, 3H], 1.57 – 1.41 (m, 2H, 15), 1.41 – 1.26 (m, 2H, 16), 0.97 – 0.86 (m, 3H, 17), [1.02 (d, J=6.4), 28 minor; 0.99 (d, J=6.4), 28 major, 3H], 0.97 – 0.86 (m, 3H, 17), [0.86 – 0.78 (m) 29 major; 0.73 (d, J=6.6) 29 minor; 0.70 (d, J=6.6) 29 minor, 3H] ppm.

13C NMR (151 MHz, MeOD) δ [173.3, 173.1, 172.12 172.1, 171.8, 171.70, 170.28, 170.05- 7, 13, 18], [146.8, 146.2- 10], [144.9, 144.8- 20], 136.4 (21), [131.0, 129.94, 129.91, 129.3, 129.2-19, 21-26], [123.3, 123.0- 9], [119.7, 119.4, 119.2- 19, 21-26], 88.1 (1), 81.3 (4 or 5), [75.7, 75.6- 3], 71.5 (4 or 5), [68.9, 68.7, 65.0, 64.9- 12], 62.4 (6), [57.0, 56.59- 2], [41.4, 41.1- 11], [40.2, 40.1- 14], [32.3, 32.25- 15], [30.1, 30.0, 28.7, 28.6- 27], [22.6, 22.57, 22.52- 8], [21.13, 21.09- 16], [20.2, 20.0, 19.99, 19.7, 19.4, 19.3- 28, 29], [14.13, 14.10, 14.0- 17] ppm.

FAB-HRMS (m/z): calcd. for C$_{29}$H$_{42}$N$_6$O$_7$ + Na: 609.3013; found 609.3030.

Yield: 40mg (84%, 0.07mmol), white solid
1H NMR (600 MHz, MeOD) δ = [8.03 (s); 8.01(s); 7.97 (s); 7.96 (s); 7.92 (s), 1H, 9], [7.90 – 7.75 (m); 7.58 – 7.27 (m), 5H, 21-25], 5.84 – 5.54 (m, 2H, 1 and 19), [5.07 – 4.72 (m); 4.69 –
4.62 (m); 4.57 – 4.48 (m), 2H, 11), [4.62 – 4.57 (m); 4.48 – 4.43 (m); 4.02 – 3.93 (m), 1H, 12], 4.28 – 4.10 (m, 1H, 2), [3.94 – 3.84 (m); 3.84 – 3.65 (m), 2H, 6], 3.84 – 3.65 (m, 1H, 3), 3.65 – 3.49 (m, 2H, 4, 5), [3.20 – 3.02 (m); 2.97 – 2.89 (m), 2H, 14], 2.42 – 2.20 (m, 1H, 26), [1.81 (s); 1.80 (s); 1.79 (s); 1.77 (s), 3H, 8], 1.53 – 1.34 (m, 2H, 15), 1.34 – 1.16 (m, 2H, 16), 1.03 – 0.85 (m, 3H, 17), [1.03 – 0.85 (m); 0.84 – 0.73 (m); 0.64 (d, J=6.6); 0.54 (d, J=6.7); 0.24 – 0.16 (m), 0.11 (d, J=6.7), 6H, 27, 28] ppm.

13C NMR (151 MHz, MeOD) δ [176.1, 175.7, 175.5, 174.8, 174.7, 173.5, 171.8, 171.4, 171.38-7, 13, 18], [145.3, 145.2- 20], [140.5, 140.3, 140.1, 139.9- 10], [129.99, 129.97, 129.90, 129.86, 129.7, 129.2, 128.84, 128.83, 127.5, 123.8- 21-25], [123.3, 123.26- 9], [88.2, 88.1, 87.9, 87.8- 1], [81.24, 81.20- 4 or 5], [75.9, 75.6, 75.5- 3], [73.6, 73.4, 73.35- 19], [71.5, 71.47, 71.3- 4 or 5], [67.1, 66.7, 66.3, 64.6- 12], [62.4, 62.3- 6], [57.2, 57.0, 56.9, 56.4- 2], 41.2 (11), [40.2, 40.1, 39.99, 39.90, 39.8- 11, 14], [32.4, 32.2, 32.16, 32.1- 15], [29.0, 28.8, 28.34, 28.30- 26], [22.69, 22.66, 22.64- 8], [21.1, 21.08, 21.05, 21.02- 16], [20.2, 19.9, 19.7, 19.64, 19.63, 19.6, 18.8, 18.6, 18.5- 27, 28], [14.12, 14.11, 14.04- 17] ppm.

FAB-HRMS (m/z): calcd. for C$_{28}$H$_{42}$N$_{6}$O$_{8}$ + Na: 613.2962; found 613.2978.

Bl.faba

Yield: 46mg (83%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.27 (s); 8.19 (s); 8.17 (s); 8.16 (s); 7.64 (s), 1H, 9], 7.96 – 7.85 (m); 7.54 – 7.03 (m), 4H, 21-24), 5.94 – 5.65 (m, 1H, 1), [5.44 (d, J=15.3); 5.37 (d, J=15.1); 5.27 – 5.16 (m); 5.12 – 4.91 (m); 4.73 – 4.38 (m), 2H, 11), [4.73 – 4.38 (m); 3.82 – 3.38 (m), 1H, 12], 4.37 – 3.98 (m, 1H, 2), [3.98 – 3.84 (m); 3.82 – 3.38 (m), 2H, 6], 3.82 – 3.38 (m, 3H, 3, 4, 5), 3.30 – 3.03 (m, 2H, 14), 2.60 – 2.35 (m, 1H, 25), [1.79 (s); 1.78 (s); 1.77 (s); 1.75 (s); 1.74 (s), 3H, 8], 1.59 – 1.45 (m, 2H, 15), 1.47 – 1.24 (m, 2H, 16), 1.00 – 0.89 (m, 3H, 17), [1.01 (d, J=6.5), 1.00 – 0.89 (m); 0.89 – 0.77 (m); 0.74 (d, J=6.4); 0.68 (d, J=6.4); 0.56 (d, J=6.5), 6H, 26, 27] ppm.

13C NMR (151 MHz, MeOD) δ [174.1, 174.0, 173.8, 173.4, 173.3, 173.1, 172.9, 172.3, 172.25, 171.8, 171.7- 7, 13, 18], [143.15, 143.14, 143.0- 10], [141.3, 141.1, 140.9, 140.84, 140.7, 140.4, 132.1, 132.09, 131.9, 131.7, 131.69, 129.9, 129.5, 129.49, 129.4, 129.2, 129.1, 128.7, 128.5- 19, 21-24], [126.2, 126.1, 125.4, 124.9, 123.74, 123.72, 123.7- 9], [93.8, 93.75, 93.5- 20], [88.2, 88.01, 87.9, 87.86, 87.5- 1], [81.4, 81.3, 81.29, 81.23, 81.2- 4 or 5], [76.8, 76.2, 75.8, 75.7, 75.65- 3], [71.6, 71.5, 71.4- 4 or 5], [70.6, 70.5, 69.2, 65.8- 12], [62.4, 62.2- 6], [57.2, 57.1, 56.7, 56.68, 56.5, 56.4- 2], 43.6 (11), [40.2, 40.1, 39.98, 39.95- 11, 14], [32.5, 32.4, 32.3, 32.1, 32.0- 15], [30.4, 30.2, 30.0, 29.8, 29.0, 28.9, 28.84, 28.82- 25], [22.89, 22.86, 22.7, 22.66- 8], 21.4 (16), [21.3, 21.2, 21.08, 21.06, 20.8, 20.77, 20.4, 20.35, 20.30, 19.8, 19.7, 19.5, 19.45- 26, 27], [14.1, 14.08, 14.05- 17] ppm.
FAB-HRMS (m/z): calcd. for C_{27}H_{39}IN_6O_7 + Na: 709.1823; found 709.1846.

BI.gaba

Yield: 39mg (88%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) δ = [7.97 (s) 9 major; 7.95 (s) 9 minor; 7.89 (s) 9 minor; 7.88 (s) 9 major, 1H], 5.81 – 5.72 (m, 1H, 1), [5.04 – 4.94 (m); 4.87 – 4.68 (m), 2H, 11], [4.59 (d, J=10.8); 4.54 (d, J=10.8); 3.94 – 3.85 (m), 1H, 12], 2.56 – 2.08 (m, 4H, 19, 20, 23), [1.78 (s) 8 major; 1.76 (s) 8 minor; 1.75 (s) 8 minor, 3H], 1.56 – 1.38 (m, 2H, 15), 1.41 – 1.26 (m, 2H, 16), 1.05 – 0.88 (m, 3H, 17), [1.05 – 0.88 (m); 0.83 – 0.75 (m); 0.69 – 0.60 (m), 12H, 21, 22, 24, 25] ppm.

13C NMR (151 MHz, MeOD) δ [176.7, 176.5, 175.4, 175.36, 173.3, 173.25, 173.1, 173.08, 172.3, 172.7, 172.1, 172.0, 171.9- 7, 13, 18], [146.4, 145.8- 10], [124.7, 123.9, 123.1, 122.7- 9], [88.1, 88.06, 87.8, 87.7- 1], [81.3, 81.27, 81.24, 81.22- 4 or 5], [76.0, 75.7, 75.6- 3], [71.5, 71.4, 71.3- 4 or 5], [68.3, 68.2, 64.9- 12], [62.5, 62.4, 62.38, 62.3- 6], [57.1, 57.0, 56.7, 56.5- 2], [43.7, 43.6, 43.1, 42.9- 19], [41.8, 41.5- 11], [40.2, 40.15, 40.1, 40.0, 39.9- 14], [32.3, 32.28, 32.24, 32.22- 15], [29.7, 29.6, 28.5, 28.3- 23], [27.04, 27.01, 26.7, 26.6- 20], [23.2, 23.1, 23.01, 22.99, 22.93, 22.90, 22.89, 22.87, 22.83, 22.7, 22.67, 22.63- 8, 21, 22, 24, 25], [21.2, 21.1, 21.09- 16], [20.2, 20.1, 20.0, 19.94, 19.91, 19.8, 19.7, 19.34, 19.30- 21, 22, 24, 25], [14.12, 14.09, 14.07, 14.06- 17] ppm.

FAB-HRMS (m/z): calcd. for C_{25}H_{44}N_6O_7 + Na: 563.3169; found 563.3161.

BI.haba

Yield: 38mg (92%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.32 – 8.26 (m); 8.19 – 8.11 (m); 8.05 – 8.00 (m), NH-24],
[7.98 (s); 7.95 (s); 7.90 (s); 7.89 (s); 1H, 9], 5.80 – 5.73 (m, 1H, 1), [5.02 – 4.94 (m); 4.86 – 4.77 (m); 4.75 – 4.67 (m), 2H, 11], [4.60 (d, J=10.7); 4.55 (d, J=10.8); 3.95 – 3.85 (m), 1H, 12], 4.26 – 4.11 (m, 1H, 2), [3.95 – 3.85 (m); 3.80 – 3.61 (m), 2H, 6], 3.80 – 3.61 (m, 1H, 3), 3.64 – 3.45 (m, 2H, 4, 5), 3.27 – 2.96 (m, 2H, 14), 2.69 – 2.27 (m, 3H, 19, 21), [1.77 (s); 1.77 (s); 1.75 (s), 3H, 8], 1.56 – 1.26 (m, 4H, 15, 16), 1.21 – 1.04 (m, 3H, 20), 1.00 – 0.88 (m, 3H, 17), [1.00 – 0.88 (m); 0.82 – 0.75; 0.66 (d, J=6.5), 0.63 (d, J=6.6), 6H, 22, 23] ppm.

13C NMR (151 MHz, MeOD) δ [178.1, 177.9, 176.8, 176.7, 173.8, 173.3, 173.2, 173.15, 172.2, 172.1, 171.96, 171.90- 7, 13, 18], [146.8, 146.4, 145.8- 10], [124.6, 123.8, 123.1, 122.6- 9], [88.1, 88.08, 87.83, 87.79- 1], [81.3, 81.24, 81.21- 4 or 5], [75.9, 75.6, 75.57- 3], [71.4, 71.35, 71.3- 4 or 5], [68.1, 67.9, 64.9- 12], [62.4, 62.3, 62.26- 6], [57.0, 56.9, 56.7, 56.3- 2], [41.6, 41.2- 11], [40.18, 40.1, 40.0- 14], [39.66 (11), [32.3, 32.2, 32.17- 15], [28.5, 28.4- 21], [28.1, 27.9, 27.8, 27.7- 19], [22.7, 22.6- 8], [21.2, 21.1, 21.08- 16], [20.2, 20.1, 19.8, 19.7, 19.68, 19.2, 19.15, 14.14, 14.11, 14.08- 7, 22, 23], [9.9, 9.84, 9.80- 20] ppm.

FAB-HRMS (m/z): calcd. for C_{23}H_{40}N_{6}O_{7}+ H: 535.2856; found 535.2866.

Bl.iaba

Yield: 32mg (77%, 0.06mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.03 (s); 8.00 (s); 7.98 (s); 7.91 (s), 1H, 9], 5.82 – 5.71 (m, 1H, 1), [5.05 – 4.96 (m); 4.79 – 4.60 (m), 2H, 11], [4.57 (d, J=10.9); 3.80 – 3.45 (m), 1H, 12], [4.54 – 4.35 (m); 4.32 – 4.10 (m), 2H, 19], 4.32 – 4.10 (m, 1H, 2), [3.94 – 3.84 (m); 3.80 – 3.45 (m), 2H, 6], 3.80 – 3.45 (m, 3H, 4, 5, 3), 3.29 – 2.91 (m, 2H, 14), 2.53 – 2.28 (m, 1H, 20), [1.78 (s); 1.77 (s); 1.75 (s), 3H, 8], 1.55 – 1.25 (m, 4H, 15, 16), 1.00 – 0.88 (m, 3H, 17), [1.00 – 0.88 (m); 0.82 – 0.75 (m); 0.66 (d, J=6.5); 0.61 (d, J=6.5), 6H, 22, 21] ppm.

13C NMR (151 MHz, MeOD) δ [175.61, 175.5, 174.4, 174.3, 173.5, 173.4, 171.8, 171.7, 171.4, 171.3, 164.9- 7, 18, 13], [146.1, 145.9, 145.8, 145.3- 10], [123.2, 122.9- 9], [88.12, 88.10, 87.9- 1], [81.27, 81.22, 81.2- 4 or 5], [75.6, 75.58, 75.5- 3], [71.5, 71.4, 71.35, 71.2- 4 or 5], [66.8 (12), [65.2, 65.1, 62.4, 62.3, 62.2- 6], [62.1, 61.9, 61.7- 19], [56.9, 56.8, 56.2- 2], [40.2, 40.1, 40.0- 14], [39.6, 39.5, 39.4- 11], [32.26, 32.25, 32.24, 32.2, 31.7- 14], [29.3, 29.2, 28.5, 28.3- 20], [22.7, 22.6, 22.56- 8], [21.13, 21.11, 21.08- 16], [19.98, 19.92, 19.7, 19.5, 19.49, 19.17, 19.16- 21, 22], [14.14, 14.10, 14.07- 17] ppm.

FAB-HRMS (m/z): calcd. for C_{22}H_{38}N_{6}O_{8} + Na: 535.2649; found 535.2658.
Bl.jaba

Yield: 38mg (81%, 0.07mmol), white solid

\[^1H\text{ NMR (600 MHz, MeOD)}\ \delta = 8.10 \text{ (m, NH-27, NH-28), [8.00 (s); 7.97 (s); 7.96 (s), 1H, 9], [8.54 (m); 7.92 (s); 7.46 – 7.34 (m); 7.29 – 7.18 (m); 7.10 – 7.01 (m), 3H, 21, 22, 23], 5.83 – 5.74 (m, 1H, 1), [4.99 – 4.80 (m); 4.79 – 4.66 (m), 2H, 11], [4.62 – 4.53 (m); 3.96 – 3.80 (m), 1H, 12], 4.27 – 4.12 (m, 1H, 2), [4.08 – 4.02 (m); 3.96 – 3.80 (m), 2H, 19], [3.96 – 3.80 (m); 3.80 – 3.65 (m), 1H, 3], 3.65 – 3.49 (m, 2H, 4, 5), 3.24 – 3.00 (m, 2H, 14), 2.52 – 2.24 (m, 1H, 24), [0.98 – 0.88 (m); 0.75 – 0.67 (m), 2H, 17], [0.98 – 0.88 (m); 0.75 – 0.67 (m), 2H, 17].\]

\[^{13}C\text{ NMR (151 MHz, MeOD)}\ \delta \text{ [175.07, 174.8, 173.3, 173.26, 173.2, 171.8 – 18, 13], 149.9 (21, 22, 23), [146.3, 145.7 – 10], 138.5 (21, 22, 23), [135.9, 135.85, 135.8 – 20], [129.8, 129.5, 129.48, 127.2, 127.0, 126.8, 126.79, 123.9, 123.8, 123.7 – 21, 22, 23], [123.1, 122.8 – 9], [88.2, 88.16, 87.9, 87.7 – 1], [81.3, 81.2, 81.19, 81.16 – 4 or 5], [75.9, 75.6, 75.5 – 3], [71.4, 71.3, 71.2 – 4 or 5], [68.6, 68.4, 64.9 64.8 – 12], [62.4, 62.38, 62.32, 62.3 – 6], [56.9, 56.8 – 2], [41.6, 41.1 – 11], [40.2, 40.1, 40.02 – 14], [36.9, 36.88, 36.4, 36.39 – 19], [32.2, 32.18 – 15], [29.5, 28.6, 28.4 – 24], [22.7, 22.67, 22.65 – 8], [21.2, 21.1, 21.08 – 16], [19.7, 19.66, 19.3, 19.26, 19.17, 19.14 – 26, 25, 17], [14.16, 14.14, 14.1 – 17].\]

FAB-HRMS \(m/z\): calcd. for C_{26}H_{40}N_{6}O_{7}S + Na: 603.2577; found 603.2561.

Bl.kaba

Yield: 32mg (77%, 0.06mmol), white solid

\[^1H\text{ NMR (600 MHz, MeOD)}\ \delta = [8.73 – 8.43 (m); 8.25 – 7.69 (m), 3H, 20-23], [7.55 (s); 7.50 (s), 1H, 9], 5.96 – 5.69 (m, 1H, 1), [5.31 – 4.94 (m); 4.78 – 4.58 (m), 2H, 11], [4.48 (m); 3.67 – 3.61 (m), 1H, 12], 4.38 – 4.05 (m, 1H, 2), [3.89 (m); 3.83 – 3.67 (m), 2H, 6], 3.83 – 3.67 (m, 1H, 3), 3.62 – 3.48 (m, 2H, 4, 5), 3.30 – 3.04 (m, 2H, 14), 2.58 – 2.41 (m, 1H, 24), [1.83 (s); 1.77 (s); 1.73 (s), 3H, 8], 1.60 – 1.44 (m, 2H, 15), 1.44 – 1.24 (m, 2H, 16), 1.09 – 0.54 (m, 9H, 26, 25, 17) ppm.\]
13C NMR (151 MHz, MeOD) δ [173.3, 171.7, 171.49, 171.48- 7, 18, 13], [151.5, 151.4, 151.2, 148.3, 148.2, 148.1- 20, 21, 22, 23], [146.4, 146.3, 146.1- 10], [136.7, 136.6, 136.5- 20, 21, 22, 23], [134.4, 134.2- 19], [125.5, 124.7, 124.5, 124.4- 9], 123.15 (20, 21, 22, 23), [123.3, 122.8- 1], [123.3, 128.8- 4 or 5], 119.13 (4 or 5), 118.57 (4 or 5), [71.5, 71.4, 71.3- 4 or 5], [67.4, 67.37, 65.2, 65.15- 12], [62.4, 62.38, 62.31- 6], [57.1, 56.9, 56.5- 2], [42.9, 42.7, 42.6, 42.5- 19], [40.8, 40.5- 11], [40.1, 40.09, 40.07- 14], [39.7, 39.67- 11], [32.2, 32.17- 15], [29.6, 28.5, 28.4- 22], [22.7, 22.6- 8], [22.5, 22.4, 22.39- 21], [21.1, 21.09- 16], [20.0, 19.9, 19.6, 19.57, 19.55, 19.3, 19.2- 24, 25], [14.1, 14.09, 14.07- 17] ppm.

FAB-HRMS (m/z): calcd. for C26H39N7O7 + Na: 584.2809; found 584.2820.

Bl.maba

![Diagram of Bl.maba](image)

Yield: 25mg (54%, 0.04mmol), white solid

1H NMR (600 MHz, MeOD) δ = [8.05 (s); 7.97 (s); 7.96 (s); 7.93 (s), 1H, 9], 5.80 – 5.73 (m, 1H, 1), 5.12 – 4.66 (m, 2H, 11), [4.61 (d, J=10.9); 4.57 – 4.53 (m); 3.83 – 3.63 (m), 1H, 12], 4.38 – 3.98 (m, 3H, 2, 19), [3.95 – 3.85 (m); 3.83 – 3.63 (m), 2H, 6], 3.83 – 3.63 (m, 1H, 3) 3.63 – 3.48 (m, 2H, 4, 5), 3.27 – 2.90 (m, 2H, 14), 2.57 – 2.26 (m, 1H, 22), [2.04 (s); 2.03 (s); 2.01 (s); 2.00 (s); 1.99 (s), 3H, 21], [1.78 (s); 1.77 (s); 1.75 (s), 3H, 8], 1.55 – 1.26 (m, 4H, 15, 16), 1.04 – 0.85 (m, 3H, 17), [1.04 – 0.85 (m); 0.84 – 0.76 (m); 0.71 (d, J=6.5), 0.65 (d, J=6.5), 6H, 23, 24] ppm.

13C NMR (151 MHz, MeOD) δ [173.4, 172.6, 172.5, 171.8, 171.7, 171.3, 171.1- 7, 13, 18, 20], [146.1, 145.4- 10], [123.3, 122.8- 9], [88.1, 87.8- 1], [81.23, 81.2- 4 or 5], [75.8, 75.7, 75.6, 75.4- 3], [71.5, 71.4, 71.3- 4 or 5], [67.4, 67.37, 65.2, 65.15- 12], [62.4, 62.38, 62.31- 6], [57.1, 56.9, 56.5- 2], [42.9, 42.7, 42.6, 42.5- 19], [40.8, 40.5- 11], [40.1, 40.09, 40.07- 14], [39.7, 39.67- 11], [32.2, 32.17- 15], [29.6, 28.5, 28.4- 22], [22.7, 22.6- 8], [22.5, 22.4, 22.39- 21], [21.1, 21.09- 16], [20.0, 19.9, 19.6, 19.57, 19.55, 19.3, 19.2- 24, 25], [14.1, 14.09, 14.07- 17] ppm.

FAB-HRMS (m/z): calcd. for C24H41N7O8 + Na: 578.2914; found 578.2925.
Bi.fcba

Yield: 42mg (77%, 0.06mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.31$ (s); 8.22 (s); 8.19 (s); 8.16 (s), 1H, 9], [7.96 – 7.74 (m); 7.58 – 7.29 (m); 7.28 – 7.06 (m), 5H, 21–24, NH-27], 5.94 – 5.70 (m, 1H, 1), [4.45 – 4.50 (m); 4.01 – 3.85 (m); 3.84 – 3.46 (m), 1H, 12], 4.40 – 4.04 (m, 1H, 2), [4.01 – 3.85 (m); 3.84 – 3.46 (m), 2H, 6], 3.84 – 3.46 (m, 3H, 4, 5, 3], 3.27 – 3.03 (m, 2H, 14), 2.21 – 1.84 (m, 2H, 25), [1.81 (s); 1.79 (s); 1.76 (s); 1.63 (s); 1.62 (s), 3H, 8], 1.60 – 1.40 (m, 2H, 15), 1.40 – 1.26 (m, 2H, 16), [1.10 (t, $J=7.6$); 1.07 – 1.00 (m); 0.77 (t, $J=7.4$); 0.74 – 0.70 (m); 0.68 (t, $J=7.4$); 0.57 (t, $J=7.3$), 3H, 26], 1.00 – 0.85 (m, 3H, 17) ppm.

13C NMR (151 MHz, MeOD) $\delta = [174.2, 174.1, 173.9, 173.2, 173.1, 172.9, 172.8, 172.6-7, 13, 18], [143.2, 143.1, 142.8, 142.7, 142.3-10, 19], [141.0, 140.9, 140.7, 140.4, 132.0, 131.9, 131.86, 131.8, 129.7, 129.5, 129.4, 129.3, 129.28, 129.2, 129.28, 129.2, 128.7, 128.6, 128.0, 127.9-21-24], [126.1, 124.4, 124.2, 123.2, 123.1-9], [93.8, 93.76, 93.4, 93.1, 93.0, 92.9-20], [88.2, 88.1, 88.0, 87.9, 87.6-1], [81.4, 81.3, 81.2, 81.16-4 or 5], [76.6, 76.1, 75.7, 75.67, 75.5, 75.47-3], [71.6, 71.4, 71.3, 71.27-4 or 5], [66.4, 66.3, 66.2, 66.1, 64.6, 64.5, 62.9, 62.87-12], [62.6, 62.4, 62.3-6], [57.1, 56.9, 56.8, 56.7, 56.6, 56.4-2], [45.9, 45.5, 40.7-11], [40.4, 40.4, 40.3, 40.2, 40.0-11, 14], [32.5, 32.46, 32.4, 32.36, 32.3, 32.23, 32.21-15], [32.2, 26.3, 26.2, 25.7, 25.6-25], [23.3, 23.2, 22.9, 22.8, 22.76, 22.7-8], [21.3, 21.2, 21.1-16], [14.2, 14.1, 14.06-17], [12.8, 11.9, 11.87, 11.7, 11.5, 11.4-26] ppm.

FAB-HRMS (m/z): calcd. for C$_{26}$H$_{37}$IN$_6$O$_7$ + Na: 695.1666; found 695.1651.

Bi.feba

Yield: 49mg (86%, 0.07mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.32$ (s) 9 major; 8.21 (s) 9 major; 8.17 (s) 9 minor; 8.16 (s) 9 minor, 1H], [7.97 – 7.82 (m); 7.55 – 7.28 (m); 7.27 – 7.08 (m), 4H, 21–24], 5.91 – 5.70 (m, 1H, 1), [5.25 – 5.02 (m); 4.78 – 4.67 (m); 4.50 – 4.36 (m), 2H, 11], 4.35 – 4.06 (m, 1H, 2), [4.35
1H NMR (600 MHz, MeOD) δ = [8.33 (s) 9 major; 8.20 (s) 9 major; 8.18 (s) 9 minor; 8.14 (s) 9 minor, 1H], [7.97 – 7.83 (m); 7.53 – 7.29 (m); 7.29 – 7.09 (m), 4H, 21-24], 5.92 – 5.69 (m, 1H, 1), [5.23 – 4.99 (m); 4.78 – 4.53 (m); 4.49 – 4.38 (m), 2H, 11], [4.49 – 4.38 (m); 3.83 – 3.48 (m), 4.04 – 3.95 (m), 1H, 12], 4.35 – 4.04 (m, 1H, 2), [3.94 – 3.86 (m); 3.83 – 3.48 (m), 2H, 6], 3.83 – 3.48 (m, 3H, 4, 3, 5), 3.30 – 3.09 (m, 2H, 14), 2.06 – 1.91 (m, 2H, 25), [1.86 (s); 1.82 (s); 1.81 (s); 1.80 (s); 1.75 (s), 3H, 8], 1.66 – 1.26 (m, 5H, 15, 16), 1.14 – 0.56 (m, 9H, 28, 27, 17) ppm.

13C NMR (151 MHz, MeOD) δ = [174.0, 173.9, 173.7, 173.4, 173.35, 173.1, 172.9, 172.8, 172.7, 172.4, 171.9- 7, 13, 18], [146.2, 146.0, 145.8, 145.5, 144.7, 144.6, 143.0, 142.9, 142.7, 142.2, 141.8, 141.2, 140.9, 140.7, 140.5, 140.4- 10, 19], [132.1, 131.9, 131.7, 129.6, 129.5, 129.2, 128.9, 128.7, 128.6, 127.9- 24, 23, 22, 21], [126.0, 124.6, 124.5, 124.4, 123.5, 123.2- 9], [94.5, 94.4, 93.4, 93.1, 93.0, 92.9- 20], [88.2, 88.1, 87.9, 87.85, 87.7- 1], [81.3, 81.2, 81.14, 81.10- 4 or 5], [76.7, 76.0, 75.7, 75.67, 75.5, 75.46- 3], [71.6, 71.4, 71.3- 4 or 5], [69.8, 62.83, 62.8, 62.6, 62.4, 62.3- 6, 12], [61.4, 61.3, 59.2, 58.9- 12], [57.1, 56.9, 56.7, 56.5, 56.3- 2], [45.5, 45.48, 45.3, 43.2, 41.9- 11], [40.8, 40.7, 40.6, 40.5, 40.3, 40.28, 40.24, 40.15, 39.9- 11, 14, 25], [38.9, 38.8-

BI.ffba
25], [32.5, 32.4, 32.2-15], [26.24, 26.21, 25.7, 25.6, 25.4-26], [23.0, 22.93, 22.90, 22.86, 22.8, 22.75, 22.70, 22.6-8, 28, 27, 17], [21.3, 21.2, 21.1-16], [14.13, 14.09-28, 27, 17] ppm.

FAB-HRMS (m/z): calcd. for C_{28}H_{41}IN_{6}O_{7}+Na: 723.1979; found 723.1954.

Bl.fgba

Yield: 41mg (69%, 0.06mmol), white solid

1H NMR (600 MHz, MeOD) $\delta = [8.30 (s); 8.22 (s), 8.19 (s), 8.18 (s), 1H, 9], [8.08 – 7.77 (m); 7.73 – 7.32 (m); 7.31 – 6.98 (m), 4H, 21-24], 5.91 – 5.68 (m, 1H, 1), [5.54 – 4.97 (m); 4.59 – 4.36 (m), 2H, 11], [4.76 (d, $J=11.4$); 4.67 (d, $J=11.8$); 4.66 – 4.61 (m); 3.61 – 3.44 (m), 1H, 12], 4.35 – 4.00 (m, 1H, 2), [3.99 – 3.83 (m); 3.84 – 3.61 (m), 2H, 6], 3.84 – 3.61 (m, 1H, 3), 3.61 – 3.44 (m, 2H, 4, 5), 3.28 – 3.02 (m, 2H, 14), 2.52 – 1.90 (m, 1H, 25), [1.83 (s); 1.80 (s); 1.78 (s); 1.76 (s), 3H, 8], 1.75 – 0.54 (m, 17H, 30, 29, 28, 27, 17, 16, 15) ppm.

13C NMR (151 MHz, MeOD) $\delta = [174.3, 173.4, 173.1, 172.9-7, 13, 18], [143.2, 143.2, 143.16-10, 19], [141.3, 141.1, 140.9, 140.8, 132.1, 131.9, 131.7, 129.6, 129.5, 129.4, 129.2, 129.1, 128.6, 128.5-21-24], [123.8, 123.7, 123.5-9], [94.2, 93.9, 93.7, 93.5, 93.0-20], [88.2, 88.1, 87.8-1], [81.4, 81.3, 81.2, 81.1, 81.0-4 or 5], [76.2, 75.8, 75.7, 75.6, 75.4-3], [71.6, 71.4, 71.36, 71.3-4 or 5], [69.7, 69.6, 68.24, 68.21, 64.4-12], [62.6, 62.44, 62.40-6], [57.3, 57.1, 56.7, 56.6, 56.4, 56.3-2], [40.2, 40.1, 39.95, 39.92-11, 14], [39.3, 39.2, 39.1, 38.8, 38.1, 37.9-25], [32.5, 32.3, 32.2, 32.1, 32.0-15], [31.6, 31.3, 30.8, 30.7, 30.6, 27.4, 27.3, 27.0, 26.9, 26.88, 26.6, 26.5, 26.3-26-30], [22.98, 22.91, 22.8, 22.7-8], [21.4, 21.31, 21.28, 21.1-16], [14.2, 14.10, 14.08-17] ppm.

FAB-HRMS (m/z): calcd. for C_{30}H_{43}IN_{6}O_{7}+Na: 749.2136; found 749.2155.

Bl.abcb

Yield: 33mg (62%, 0.05mmol), white solid
\(^1\)H NMR (600 MHz, MeOD) \(\delta = [8.68 \text{ (s); } 8.60 \text{ (s); } 8.55 \text{ (s); } 8.52 \text{ (s), 1H, 9}], 7.64 - 6.39 \text{ (m, } 14\text{H, 16-20, 23-27, 29, 30, 32, 33)}], 5.98 - 5.76 \text{ (m, 1H, 1)}, [6.60 - 6.38 \text{ (m); } 5.98 - 5.76 \text{ (m, 1H, 12)], [5.98 - 5.76 \text{ (m); } 5.66 - 5.49 \text{ (m); } 5.25 - 5.01 \text{ (m); } 4.80 - 4.47 \text{ (m, 2H, 14)], 4.49 - 4.29 \text{ (m, 2H, 21), 4.25 - 4.04 \text{ (m, 1H, 2)], [3.98 - 3.85 \text{ (m); } 3.85 - 3.45 \text{ (m, 2H, 21), 3.85 - 3.45 \text{ (m, 6H, 4, 3, 5, 34)]}, [1.78 \text{ (s), } 1.75 - 1.62 \text{ (m, 3H, 8)] \text{ ppm.}}

\(^{13}\)C NMR (151 MHz, MeOD) \(\delta = [173.7, 173.5, 173.4, 172.5, 172.4, 164.9, 164.9, 164.8, 164.7, 164.6, 161.4 - 7, 11, 13], [144.6, 144.5, 144.4 - 10], [139.8, 139.77, 139.5, 139.4 - 15, 22, 28, 31], [133.0, 132.9, 132.5, 132.4, 132.1, 132.06, 129.5, 129.45, 128.9, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 127.79, 127.5, 127.47, 127.2, 126.8, 114.9, 114.8, 114.7 - 9, 16-20, 23-27, 29, 30, 32, 33], [88.6, 88.5, 88.3, 88.2, 88.1 - 1], 81.4 (4 or 5), [75.5, 75.48, 75.4, 75.3 - 3], 71.3 (4 or 5), [65.1, 65.0 - 12], [62.31, 62.27 - 6], [57.4, 57.4, 56.9, 56.87 - 2], 55.7 (34), [51.9, 51.8, 51.6, 51.55, 51.5 - 14], 44.1 (21), [22.5, 22.47, 22.45 - 8] \text{ ppm.}}

ESI(+)HRMS (m/z): calcd. for C\(_{34}\)H\(_{38}\)N\(_6\)O\(_8\) + H: 659.2829; found 659.2813.

Anti-microbial testing

Bacterial strains and growth conditions. *Clostridium difficile* ATCC 70057 (tcdA-, tcdB-) was grown in supplemented brain heart infusion (BHIS) containing 0.1% cysteine and 0.5% yeast extract at 37 °C under anaerobic conditions (Whitley DG250 workstation). *Bacillus subtilis* ATCC 11775 and *Bacillus cereus* were cultured in either Nutrient Broth (NB) or LB at 30 °C. *Streptococcus pneumoniae* ATCC 6501 was cultured in either brain heart infusion (BHI) agar broth or agar under anaerobic conditions at 37 °C.

Antimicrobial screening assay. The resazurin microtiter assay procedure described by Palomino and coworkers was used for assessing antimicrobial activity. Briefly, the assay was performed in either LB or BHI broth depending on the organism. Resazurin sodium salt powder was prepared at 0.01% (w/v) in distilled water and filter sterilized. Preliminary studies were carried out at a single inhibitor concentration of 250 µM. Growth controls containing no GNT, sterility controls without inoculation, and controls containing known antibiotics (chloramphenicol, kanamycin, or ampicillin) were also included. The inoculum was prepared from second passage cultures in the appropriate medium and standardized to O.D.\(_{600\text{nm}}\) = 1.0 and the wells inoculated with a 1:20 dilution. The plates were incubated for 4 h under either aerobic or anaerobic conditions as required. After incubation 30 µL of resazurin solution was added to each well and incubated for 30 min. A change in color from blue to pink indicated reduction of resazurin, and therefore bacterial growth. The MIC was determined as the lowest drug concentration that prevented this color change. Inhibition was quantified by taking the difference in absorbance between A\(_{570\text{nm}}\)-A\(_{600\text{nm}}\). The lower the number, the greater the degree of inhibition. Compounds that demonstrated inhibition of microbial growth in the initial screen were selected for further analysis to assess whether growth inhibition was dependent on inhibitor concentration. Serial two-fold dilutions of each compound in 100 µL of medium were prepared directly in 96 well

plates at concentrations ranging from 250 µM to 7 µM. Minimum inhibitory concentration was determined as the lowest drug concentration that prevented the color change from blue to pink.

Microscopy. Morphologic changes due to sub MIC concentrations of inhibitor (0.8x MIC) were monitored by phase contrast microscopy using a Zeiss Primostar phase contrast microscope equipped with an Axiocam ERc5s. All images were captured and processed using Zeiss Zen (2011 blue edition) software. Briefly, cells were grown (second passage) in the appropriate media in the presence or absence of 0.8x MIC inhibitor for 2.5 h. Cells were harvested by centrifugation (8000 rpm, 5 min), washed twice (1 mL) phosphate buffered saline and suspended in 100 µL sterile dH₂O. A 10 µL aliquot was heat fixed to a glass slide and imaged under oil immersion.

pNp-GlcNAc assay. *B. subtilis* was grown in LB broth overnight at 37 °C and the cells harvested by centrifugation (8000 rpm, 10 min). The cells were washed twice in PBS prior to re-suspending in PBS to an OD₆₀₀nm of 1.0. Reactions (250 µL) were set up with BI.fgba concentrations ranging from 250 µM to 0 µM. All reactions contained 4 mM pNp-GlcNAc and 198 µL of *B. subtilis* cells in PBS buffer pH 7.4. Reactions were incubated for 16 h at 30 °C prior to removal of cells by centrifugation (8,000 rpm, 10 min). Reaction supernatants were adjusted to pH 9 with the addition of 30 µL NaOH (0.5 M). Supernatants were then analyzed on a Spectromax 190 microtitre plate reader (Molecular Devices) at 490 nm. All samples were run in biological duplicate and technical triplicate.
Figure S3 - % Inhibition values for GNTs against B. subtilis and cereus. The BI prefix on the compound names has been omitted for clarity. Chloramphenicol (Cm) was used as a positive control for inhibition of bacterial growth.