Supporting Information

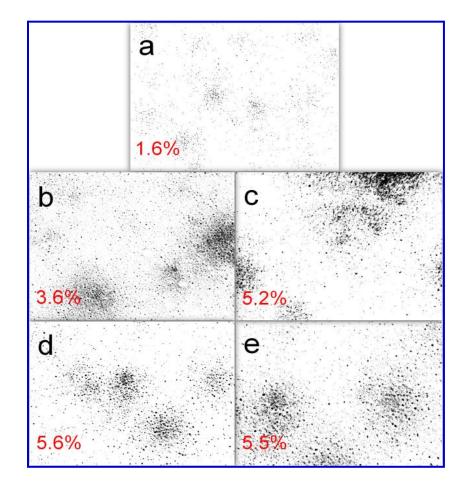
Highly Dispersible Polypyrrole Nanospheres for Advanced

Nanocomposite Ultrafiltration Membranes

Yaozu Liao,*^{a,b} Thomas P. Farrell,^a Gregory R. Guillen,^c Minghua Li,^c James A. T. Temple,^c Xin-Gui

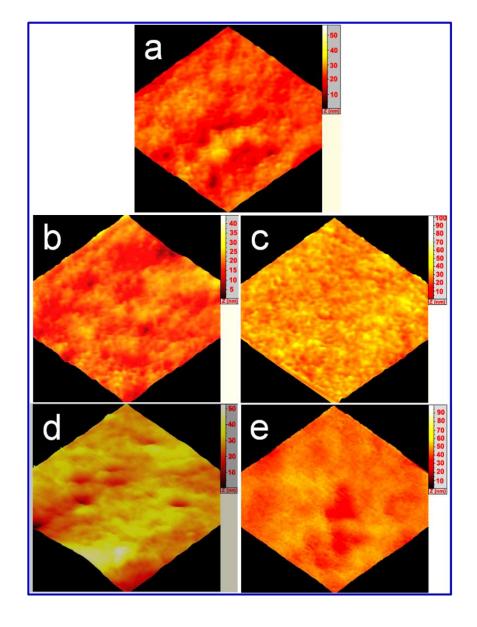
Li,^{*b} Eric M. V. Hoek, ^{*c,d} Richard B. Kaner^{*a}

^aDepartment of Chemistry & Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, 90095, USA;


^bCollege of Materials Science & Engineering and Institute of Materials Chemistry, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China;

^cDepartment of Civil & Environmental Engineering, Institute of the Environment & Sustainability and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA;

^dDepartment of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa.


*Corresponding authors: kaner@chem.ucla.edu, emvhoek@ucla.edu,

yaozu.liao@gmail.com, adamxgli@yahoo.com

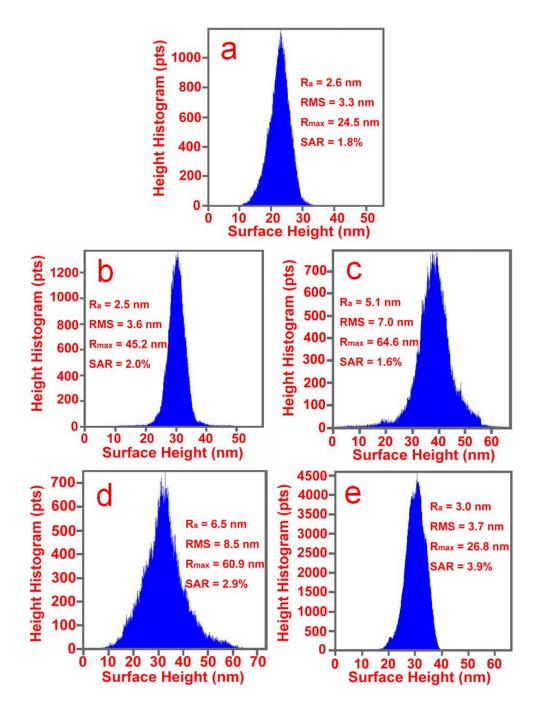

1. Contrast Adjusted Surface SEM images of Membranes

Figure S1 Surface SEM images of PPy/PSf nanocomposite membranes prepared with the addition of the following concentrations of PPy nanospheres: (a) 0, (b) 2, (c) 4, (d) 10, and (e) 20%, after contrast adjusted by NIH ImageJ software.

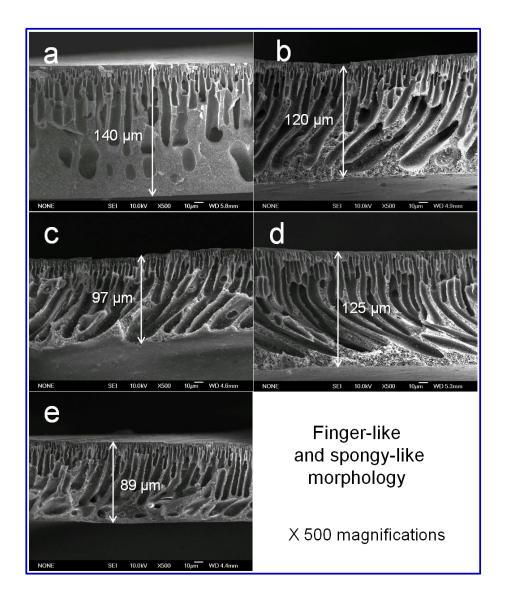
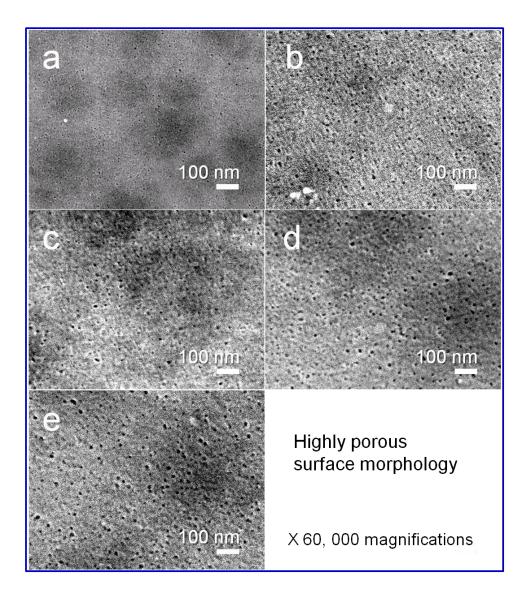

2. AFM Morphologies and Histogram Analyses of the Membranes

Figure S2 AFM 3D images of (a) PSf and (b–e) PPy/PSf nanocomposite membranes with addition of the following concentrations of PPy nanospheres: (b) 2, (c) 4, (d) 10, and (e) 20%.


Figure S3 Surface AFM histogram analyses of (a) PSf and (b–e) PPy/PSf nanocomposite membranes with the addition of the following concentrations of PPy nanospheres: (b) 2, (c) 4, (d) 10, and (e) 20%.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is C The Royal Society of Chemistry 2013

3. Cross-sectional and Surface SEM Morphologies of the Membranes

Figure S4 Cross-sectional SEM images of (a) a pure PSf and (b–e) PPy/PSf nanocomposite membranes prepared with the following sizes of PPy nanospheres (4%): (b) 85, (c) 110, (d) 200, and (e) 220 nm synthesized with (b) HCl, (c) HNO₃, (d) HClO₄, and (e) CSA, respectively.

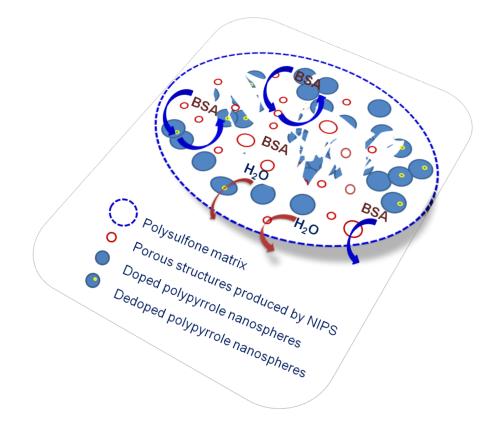


Figure S5 Surface SEM images of (a) a pure PSf and (b–e) PPy/PSf nanocomposite membranes prepared with the following sizes of PPy nanospheres (4%): (b) 85, (c) 110, (d) 200, and (e) 220 nm synthesized with (b) HCl, (c) HNO₃, (d) HClO₄, and (e) CSA, respectively.

4. Calculations of Surface Average Pore Diameters of the Membranes

The surface average pore diameters (d_p) of the membranes can be approximately calculated from BSA rejection (*r*) values on the basis of the equation, $\lambda = 1 - \sqrt{1 - \sqrt{r}}$, where $\lambda = d_s/d_p$, d_s is BSA diameter of ~6 nm, 0 < r < 1. The d_p values of the membranes are calculated by 7.0–8.2 nm, consistent with the values determined by SEM observations.

5. Proposed Geometric Structure of the PPy/PSf Nanocomposite Membrane

Figure S6 A schematic diagram illustrating the geometric structure for a typical size selective PPy/PSf nanocomposite membrane. Small molecules such as water readily pass through the membrane, while big particles such as BSA are mostly rejected.