Supplementary Material

to

METAL ION RELEASE FROM METALLOTHIONEINS:
PROTEOLYSIS AS AN ALTERNATIVE TO OXIDATION

Estevão A. Peroza · Augusto dos Santos Cabral · Xiaoqiong Wan · Eva Freisinger
Fitting of ZnII-release data in Origin with equations for exponential association kinetics

Depending on the plot form obtained from the ZnII-MT / PAR metal ion exchange reaction two different equations were used to extrapolate the data to equilibrium conditions, if necessary:

1) two-phase exponential association

\[y = y_0 + A_1 \cdot (1 - e^{-\frac{x}{w_1}}) + A_2 \cdot (1 - e^{-\frac{x}{w_2}}) \]

2) three-phase exponential association

\[y = y_0 + A_1 \cdot (1 - e^{-\frac{x}{w_1}}) + A_2 \cdot (1 - e^{-\frac{x}{w_2}}) + A_3 \cdot (1 - e^{-\frac{x}{w_3}}) \]

All fittings were performed with Origin\textsuperscript® 7.
Calculation of apparent binding constants, K_{app}, from PAR data

$$K_{app,MT} = \frac{[\text{ZnBS}] [\text{PAR}]^2}{[\text{BS}] [\text{Zn(PAR)}]^2} \cdot 10^{-6} \cdot K_{app,Zn(PAR)}$$

$K_{app,Zn(PAR)}$ (pH 7.4) = $10^{13.49}$ M$^{-2}$

1) All ZnII binding sites (ZnBS) in the respective MT are treated as non-interacting with equal K_{app}

 Example: Zn$_6$Ec-1 (control, 1st measurement)

 $$A_{500nm} = 0.11954$$
 $$[\text{Zn(PAR)}] = A_{500nm} / \varepsilon_{Zn(PAR)} = 0.11954 / 0.065 \mu M^{-1} \text{ cm}^{-1} = 1.8391 \mu M$$
 $$[\text{PAR}] = [\text{PAR}]_o - 2*[\text{Zn(PAR)}] = 100 \mu M - 2*1.8391 \mu M = 96.3218 \mu M$$
 $$[\text{ZnBS}] = [\text{ZnBS}]_o - [\text{Zn(PAR)}] = 9 \mu M - 1.8391 \mu M = 7.1609 \mu M$$
 $$[\text{BS}] = [\text{Zn(PAR)}] = 1.8391 \mu M$$

 $\Rightarrow K_{app,MT} = 10^{11.78}$ M$^{-1}$

2) All ZnBS of (partially) released ZnII ions have the same K_{app}

 All other ZnBS have much higher K_{app} and are not affected

 Example: Zn$_6$Ec$^{-1}$: 1.14 eq ZnII are released, hence only 2 of the 6 ZnBS are affected by PAR

 $$[\text{ZnBS}] = [\text{ZnBS}]_o - [\text{Zn(PAR)}] = \frac{9 \mu M}{6} * 2 - 1.8391 \mu M = 1.1609 \mu M$$

 $\Rightarrow K_{app,MT} = 10^{10.99}$ M$^{-1}$
3) If more than 1 eq ZnII is released by PAR:

This ZnII is much weaker bound and not considered

a) All remaining ZnII binding sites (ZnBS) in the respective MT have the same K_{app}

Example: Zn$_6$E$_c$$^-$1: 1.21 eq ZnII are released, hence only 5 of the 6 ZnBS are considered for the calculation, i.e. a Zn$_5$E$_c$$^-$1 species

\[
1 \text{ eq Zn}^{II} \equiv 9 \ \mu M / 6 = 1.5 \ \mu M \ Zn^{II}
\]

\[
1.5 \ \mu M \ Zn^{II} \equiv A_{500nm} = 1.5 \times 0.065 = 0.0975
\]

\[
A_{500nm} = 0.11954 - 0.0975 = 0.02204
\]

\[
[Zn(PAR)_{2}] = A_{500nm} / \varepsilon_{Zn(PAR)_{2}} = 0.02204 / 0.065 \ \mu M^{-1} \ cm^{-1} = 0.3391 \ \mu M
\]

\[
[PAR] = [PAR]_o - 2[Zn(PAR)_{2}] = 100 \ \mu M - 2 \times 1.5 \ \mu M - 2 \times 0.3391 \ \mu M = 96.3218 \ \mu M
\]

\[
[ZnBS] = [ZnBS]_o - [Zn(PAR)_{2}] = 9 \ \mu M - 1.5 \ \mu M - 0.3391 \ \mu M = 7.1609 \ \mu M
\]

\[
[BS] = [Zn(PAR)_{2}] = 0.3391 \ \mu M
\]

\[\Rightarrow K_{app,MT} = 10^{13.25} \ M^{-1}\]

b) Only K_{app} of the ZnBS of the remaining partially released ZnII ion is calculated

All other filled ZnBS have much higher K_{app} and are not affected

Example: the Zn$_5$E$_c$$^-$1 species from a), hence only 1 of the 5 remaining ZnBS is affected by PAR

\[
[ZnBS] = [ZnBS]_o - [Zn(PAR)_{2}] = 9 \ \mu M / 6 \times 1 - 0.3391 \ \mu M = 1.1609 \ \mu M
\]

\[\Rightarrow K_{app,MT} = 10^{12.46} \ M^{-1}\]
Calculation of first-order rate constant k of Zn\(^{II}\) release

Integrated law of first-order reaction:

\[
\ln \left(\frac{[\text{ZnBS}]}{[\text{ZnBS}]_0} \right) = -k \cdot t
\]

Formation of the Zn(PAR)\(_2\) complex is followed with UV/vis spectroscopy, and hence the observed absorption increase is a measure for the Zn\(^{II}\) release from the Zn\(^{II}\) binding sites (ZnBS) in the respective MT:

\[
[\text{ZnBS}]_0 \sim A_{\text{max}} - A_0 \quad \text{and} \quad [\text{ZnBS}]_t \sim A_{\text{max}} - A_t
\]

(in our measurements, \(A_0\) equals 0).

Hence:

\[
\ln \frac{A_{\text{max}} - A_t}{A_{\text{max}} - A_0} = -k \cdot t
\]

For the determination of the first-order rate constant, \(\ln \frac{A_{\text{max}} - A_t}{A_{\text{max}} - A_0}\) (or \(\ln(A_{\text{max}} - A_t)\)) is plotted against time resulting in a straight line with the slope \(-k\).

In the experiments presented here, straight lines were generally obtained for the data points between 2.5 and 100 min. The first faster Zn\(^{II}\) release step cannot be monitored with the UV/vis instrument available due to the limited number of data points (0, 0.5, 2.5 min, etc). Fittings were performed with Origin\(^\circledR\) 7.
SUPPLEMENTARY FIGURES

Figure S1. Competition experiment of PAR with musMT3 (A) and E_c-1 (B) followed by UV/vis spectroscopy at 500 nm under the different conditions indicated. All solutions, except for the control experiment, contain additionally 1 mM GSH. Data fitting (lines) to obtain the equilibrium absorption values A_{max} were performed with equations for exponential association kinetics as described in detail above in the Supplementary Material.
Figure S2. Amino acid sequences of the different MTs studied here. Cys-rich regions are highlighted with black boxes and potential proteinase K cleavage sites indicated by red vertical bars.

cicMT1

MSGCNSSCNCQCKKKSGLSYVEAGETETTVLVGPTKIHFEQAEEMVAAEDGECXCGSSCTDCFCXK

cicMT2

MSCGGNCSCQCCSKQGQGKYMPSYTEQTTSETLVMVGASQKQFQAGEQGATQGCAENQXCGSNCNTCTCK

musMT3

MSCTCNCDCYXKQVKKGNYGLIDIVETEKSYVDEVIVAAEAEDGECXCGAAGACTTCKSN

E-1

MCDDKCGAVFEGGTCECRFTRSGAAAGHNTTGGCGHCYCNFCADREGTSPGRANNRANCSCGAACNCASCASSATA

huMT2

MDVAOGANGUCSCQCKCQCKCQCTSLQKXGCYVCAQCTQCTCKGASJWRSKCXCA
Figure S3. Competition experiment of PAR with E_c-1, γ-E_c-1, and β_E-E_c-1 followed by UV/vis spectroscopy at 500 nm under control conditions. Evidently, a 1:1 mixture of γ-E_c-1 and β_E-E_c-1 results in the same absorption values (meas.) as the sum of the values obtained with the individual domains (calc.).
Figure S4. Percentage and equivalents of ZnII ions released per individual domain (fitted equilibrium data) based on two ZnII ions in γ-Ec-1 and 4 ZnII ions in β-Ec-1 for the different conditions tested. Compare also Fig. 7 in the main text.
Figure S5. Summary of ZnII release data for E\textsubscript{c}-1, \(\gamma\)-E\textsubscript{c}-1, and \(\beta\text{E}-E\text{c}-1\) at equilibrium under control and oxidizing conditions (1 mM GSH/4.5 mM GSSG) as well as upon proteolytic cleavage with trypsin. To allow better comparison with the full-length E\textsubscript{c}-1 protein, the sum of ZnII release values of the individual domains is also displayed.