Supplementary data

Figure S-1: 1H NMR spectrum of the ligand isapn, in dms-o-d6.

Figure S-2: Mass spectrum of the ligand isapn, in methanol.
Figure S-3: 1H NMR spectrum of the complex $[\text{Zn(isapn)}]\text{ClO}_4$, in MeOH-d4, at apparent pH 5.

Figure S-4: 1H NMR spectrum of the complex $[\text{Zn(isapn)}]\text{ClO}_4$, in MeOH-d4, at apparent pH 7.

In both spectra, the keto-keto species (A) is predominant. However, with increasing pH the intensity of these characteristic signals decrease, and there are other signals that can be attributed to the keto-enol species (B) or enol-enol species (C). The complex was isolated as species B, but all the species are probably present in solution at different ratio, according to the equilibria:
Figure S-5: Mass spectrum of the complex [Zn(isapn)]ClO$_4$ dissolved in methanol/water (9:1)

Figure S-5 shows the positive ion electrospray mass spectrum of the isatin-schiff base zinc(II) complex acquired from a 9:1 methanol/water solution, and reveals a metal/ligand ratio of 1:1. Zinc displays five isotopes and the two more abundant were observed in a 1:0.56 ratio for 64Zn (48.6%) and 66Zn (27.4%).
Figure S-6: Western blot analysis of the purified human topo IB fraction detected by reaction with monoclonal antibody. Lane 1, markers of different molecular weights in kDa: β-galactosidase (115.7), Bovine serum albumin (96.7), Ovalbumin (53), Soybean trypsin inhibitor (37), Carbonic anhydrase (29), Lysozyme (19.7). Lane 2, purified human topoisomerase I band.
Figure S-7: CD spectra of CT-DNA (800 μM) in phosphate buffer 50 mM/NaCl 0.1 M, in the absence and presence of the complexes [Cu(isapn)]$^{2+}$ and [Zn(isapn)]$^+$ at different concentrations (up to 160 μM).