Supplementary Material

# Supplementary Material for "PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation"

List of the Supplementary Materials:

Supplementary Methods

- Fig. S1. Impact of IL-2 and Zn<sup>2+</sup> on the phosphorylation of STAT5, Akt and ERK1/2
- Fig. S2. Impact of IL-2 and Zn<sup>2+</sup> on Akt phosphorylation in primary human T-cells
- Fig. S3. Impact of Zn<sup>2+</sup> on Akt phosphorylation on Ser473 and Thr308
- Fig. S4. Impact of N,N,N',N'-TPEN on Akt phosphorylation and CTLL-2 vitality
- Fig. S5. Release of lysosomal Zn<sup>2+</sup> in response to IL-2, -7, and -15
- Fig. S6. Role of free Zn<sup>2+</sup> in IL-15-dependent signal transduction
- Fig S7. Effect of Zn<sup>2+</sup>/pyrithione on p-Akt and p-JAK levels
- Fig. S8. Effect of inhibitors and IL-2 inactivation on lysosomal Zn<sup>2+</sup> release and cellular viability
- Fig. S9. siRNA knockdown of PTEN
- Fig. S10. Impact of Zn<sup>2+</sup>/pyrithione on PTEN degradation
- Fig. S11. Purification of recombinant PTEN
- Table S1: Calculated relative contribution of structural elements to the CD spectra shown in fig. 6D
- Table S2: Properties of cells used in this study

## **Supplementary Methods**

In general, experiments were performed as described in the Materials and Methods section of the manuscript. Additional procedures used only for the supplementary experiments are described below.

#### Viability assay with propidium iodide (PI)

Cells were collected by centrifugation at 300 g for 5 min followed by resuspension in PBS containing 10  $\mu$ g/ml PI (Sigma-Aldrich, Germany). After incubation for 5 min in the dark, viability was assessed using a FACSCalibur flow cytometer (Becton Dickinson, USA).

#### Viability assay with neutral red

Cells were seeded into a 96 micro-wellplate and cultured for 24 h. Subsequently, cells were incubated for 3 h in culture medium containing 55  $\mu$ M neutral red, washed with PBS and disrupted in a mixture of water:EtOH:acetic acid (50:50:1) by gentle shaking for 20 min. Neutral red uptake was analyzed by measurement of absorbance at 540 nm with a reference wavelength of 612 nm in a Tecan Sunrise wellplate reader (Tecan, Germany).

#### Isolation and culture of primary human T-cells

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized peripheral venous blood from healthy donors by centrifugation over Ficoll-Hypaque (Biochrom, Germany) and cultured in RPMI 1640 containing 10 % heat inactivated FCS, 2 mM L-glutamine, 100 U/mL penicillin, and 100  $\mu$ g/mL streptomycin. For enrichment of activated T-lymphocytes, PBMC were incubated for 2 days with 2.5  $\mu$ g/mL phytohaemagglutinin (PHA). Monocytes and B cells were depleted by adherence to plastic and supernatants transferred for 4 days into fresh culture medium containing 50 U/mL IL-2, yielding T-cell populations that were >95% CD3<sup>+</sup> and >93% CD25<sup>+</sup>.

#### Inactivation of IL-2 by KOH

IL-2 was inactivated by treatment with KOH (final concentration 0.33 M) for 15 min. KOH was neutralized by addition of equimolar HCl and the inactivated IL-2 used for incubations.

#### Analysis of CD data

The CD spectra depicted in figure 6D were analyzed with the DichroWeb on-line analysis platform for protein Circular Dichroism spectra (<u>http://dichroweb.cryst.bbk.ac.uk/html/home.shtml</u>) <sup>S1</sup>. Two different algorithms were used to calculate the relative contributions of structural elements, based on protein reference data set No. 4 (for input data ranging from 190 to 240 nm) <sup>S2</sup>: CONTIN <sup>S3</sup> and SELCON3 <sup>S4</sup>. The resulting relative content of  $\alpha$ -helix,  $\beta$ -sheet and turns/unstructured structural elements is shown in table S1 for both methods individually and as means of both datasets.

#### **Supplemental References**

- S1 L. Whitmore, B. A. Wallace, *Nucleic Acids Res.*, 2004, **32**, W668-W673.
- S2 N. Sreerama, R. W. Woody, Anal. Biochem., 2000, 287, 252-260.
- S3 S. W. Provencher, J. Glockner, *Biochemistry*, 1981, **20**, 33-37.
- S4 N. Sreerama, R. W. Woody, Anal. Biochem., 1993, 209, 32-44.





CTLL-2 cells were treated with IL-2 (30 U/ml) or  $Zn^{2+}$  (20  $\mu$ M) and pyrithione (Pyr, 10  $\mu$ M) for the indicated times and phosphorylated and total levels of STAT5, Akt, and ERK1/2 were detected by Western blot (representative blots are shown in figure 2A). Blots were analyzed using ImageJ software and data are shown as means of n=3 independent experiments +S.E.M.



## Fig. S2: Impact of IL-2 and Zn<sup>2+</sup> on Akt phosphorylation in primary human T-cells

Primary human T-cells were treated with IL-2 (100 U/ml) or  $Zn^{2+}$  (20  $\mu$ M) and pyrithione (Pyr, 10  $\mu$ M) for the indicated times and phosphorylated and total levels of STAT5, Akt, and ERK1/2 were detected by Western blot. Data are shown (A) as representative images or (B) means + S.E.M. quantified with ImageJ software from n=3 different donors.



# Fig. S3: Impact of Zn<sup>2+</sup> on Akt phosphorylation on Ser473 and Thr308

CTLL-2 cells were stimulated for 30 minutes with IL-2 (30 U/ml) or the indicated concentrations of Zn<sup>2+</sup> together with pyrithione (Pyr, 10  $\mu$ M). Phosphorylated Akt (Ser473 and Thr308) and total  $\beta$ -Actin were assessed by Western blot. All blots are representative of n=3 independent experiments.



#### Fig. S4: Impact of N,N,N',N'-TPEN on Akt phosphorylation and CTLL-2 vitality

(A) Densitometric quantification of the Western Blots shown in figure 3A. (B) CTLL-2 cells were stimulated for 12 h with IL-2 (30 U/ml) alone, and in combination with the indicated concentrations of N,N,N',N'-TPEN or LY294002 (50  $\mu$ M). Afterwards, cells were stained with 10  $\mu$ g/ml PI for 5 min in the dark before vitality was assessed by flow cytometry. All data show means ± SEM and are representative of n=3 independent experiments.



## Fig. S5: Release of lysosomal Zn<sup>2+</sup> in response to IL-2, -7, and -15

Primary human T-cells were loaded with FluoZin-3 to measure the lysosomal free  $Zn^{2+}$  concentration. After 10 minutes measuring the baseline fluorescence, IL-2, -7, or -15 (100 U/ml) were added. Data are shown as means from n=4 different donors ± SEM.



#### Fig. S6: Role of free Zn<sup>2+</sup> in IL-15-dependent signal transduction.

(A) CTLL-2 cells were loaded with FluoZin-3. After 10 minutes measuring the baseline fluorescence, IL-2 or -15 (100 U/ml) were added. Data are shown as means from triplicates ± SEM. (B) CTLL-2 cells were pre-treated with N,N,N',N'-TPEN (30 min), followed by stimulation with IL-15 (100 U/ml, 30 min). Western blot was performed to analyze STAT5, Akt, and ERK1/2 phosphorylation and total  $\beta$ -Actin expression. (A,B) All data are representative of n=3 independent experiments.



#### Fig. S7: Effect of Zn<sup>2+</sup>/pyrithione on p-Akt and p-JAK levels

(A) CTLL-2 cells were treated with IL-2 (30 U/ml),  $Zn^{2+}$  (20  $\mu$ M), and pyrithione (Pyr, 10  $\mu$ M) for 30 minutes. Phosphorylated Akt (Ser473) and JAK (Tyr1022/1023) as well as total  $\beta$ -Actin were analyzed by Western blot. (B,C,D) Primary human T-cells were cultured without IL-2 for 16 h. Cells were then incubated as indicated with IL-2 (50 U/ml),  $Zn^{2+}$  (20  $\mu$ M) and pyrithione (Pyr, 10  $\mu$ M), either for 20 minutes (B), or for different times between 0 and 30 min (C,D). Western blot analysis was used to detect phosphorylated Akt (Ser473), phosphorylated JAK1 (Tyr1022/1023), phosphorylated JAK3 (Tyr980/981), and total Akt, JAK3, or  $\beta$ -Actin. Data are representative of independent experiments with cells from n=3 different donors.



Fig. S8: Effect of inhibitors and IL-2 inactivation on lysosomal Zn<sup>2+</sup> release and cellular viability

(A,B) After pre-treatment with Jak-inhibitor (300 nM, 30 min), CTLL-2 cells were used to (A) analyze phosphorylated and total levels of STAT5, Akt, and ERK1/2 by Western blot after incubation with IL-2 (100 U/ml, 30 min), or (B) measure free  $Zn^{2+}$  with FluoZin-3. After 10 minutes measuring the baseline fluorescence, IL-2 (100 U/ml) was added. (C,D) CTLL-2 cells were pre-treated with Wortmannin (200 nM) or U0126 (10  $\mu$ M) for 30 minutes as indicated. Subsequently, cells were stimulated with IL-2 (30 U/ml). (C) Phosphorylated and total levels of STAT5, Akt, and ERK1/2 were analyzed by Western blot, and (D) free  $Zn^{2+}$  by measuring the fluorescence of cells loaded with Zinquin (cytosolic zinc) or FluoZin-3 (lysosomal zinc). All data are shown as representative blots or means of at least n=3 independent experiments. (E) CTLL-2 cells were loaded with FluoZin-3. After 10 minutes measuring the baseline fluorescence, the indicated concentrations of functional IL-2 (F) or KOH-inactivated IL-2. Survival was assessed by measuring neutral red uptake. Data were calculated as percent of viability at 100 U/ml functional IL-2 (F,G) CTLL-2 cells were loaded with FluoZin-3. After 10 minutes measuring the baseline fluorescence, the indicated concentrations of functional IL-2 (F) or KOH-inactivated IL-2 (G) were added. Data are shown as means + SEM (C,E) or one representative (A,F,G) of n=3 independent experiments. All Western blots in this figure are representative of at least n=3 independent experiments.



## Fig. S9: siRNA knockdown of PTEN

72 h post transfection with siRNA, HeLa cells were serum-starved for 4 hours followed by stimulation with  $Zn^{2+}$  (20  $\mu$ M) in the presence of pyrithione (Pyr, 10  $\mu$ M) for 20 minutes. Western blot analysis was performed with antibodies against total PTEN, phosphorylated Akt (Ser473) and total  $\beta$ -Actin. Representative blots for n=5 independent experiments are shown.



## Fig. S10: Impact of Zn<sup>2+</sup>/pyrithione on PTEN degradation

Primary human T-cells were cultured for 16 h without IL-2, followed by stimulation with  $Zn^{2+}$  (20  $\mu$ M) and pyrithione (Pyr, 10  $\mu$ M) for the times indicated. Protein levels of phosphorylated Akt (Ser473), total PTEN and  $\beta$ -Actin were assessed by Western blot. Blots are representative of independent experiments with cells from n=3 different donors.



#### Fig. S11: Purification of recombinant PTEN

Coomassie blue stained SDS-PAGE, showing purity of PTEN preparations after each step of the purification process.

|                               |         |         | w.t.     |                     |         | Cys124Ser |                     | Cys71Ser |          |                     |
|-------------------------------|---------|---------|----------|---------------------|---------|-----------|---------------------|----------|----------|---------------------|
|                               |         | α-helix | β-strand | turns/<br>unordered | α-helix | β-strand  | turns/<br>unordered | α-helix  | β-strand | turns/<br>unordered |
| Control                       | SELCON3 | 0.356   | 0.114    | 0.571               | 0.376   | 0.188     | 0.475               | 0.333    | 0.200    | 0.502               |
|                               | CONTIN  | 0.465   | 0.398    | 0.137               | 0.313   | 0.034     | 0.653               | 0.207    | 0.048    | 0.746               |
|                               | Average | 0.411   | 0.256    | 0.354               | 0.345   | 0.111     | 0.564               | 0.270    | 0.124    | 0.624               |
|                               |         |         |          |                     |         |           |                     |          |          |                     |
| Zn <sup>2+</sup>              | SELCON3 | 0.764   | 0.013    | 0.255               | 0.311   | 0.216     | 0.503               | 0.273    | 0.208    | 0.562               |
|                               | CONTIN  | 0.652   | 0.111    | 0.237               | 0.428   | 0.048     | 0.524               | 0.224    | 0.024    | 0.752               |
|                               | Average | 0.708   | 0.062    | 0.246               | 0.370   | 0.132     | 0.514               | 0.249    | 0.116    | 0.657               |
|                               |         |         |          |                     |         |           |                     |          |          |                     |
| H <sub>2</sub> O <sub>2</sub> | SELCON3 | 0.744   | 0.015    | 0.283               | 0.330   | 0.204     | 0.510               | 0.288    | 0.206    | 0.549               |
|                               | CONTIN  | 0.758   | 0.068    | 0.173               | 0.356   | 0.045     | 0.600               | 0.311    | 0.037    | 0.652               |
|                               | Average | 0.751   | 0.042    | 0.228               | 0.343   | 0.125     | 0.555               | 0.300    | 0.122    | 0.601               |

## Table S1: Calculated relative contribution of structural elements to the CD spectra shown in fig. 6D

| Name                | Cell type                    | Origin | PTEN<br>expression | SHIP1<br>expression |
|---------------------|------------------------------|--------|--------------------|---------------------|
| CTLL-2              | T lymphocyte                 | mu     | +                  | +                   |
| HUT-78              | Cutaneous T<br>lymphocyte    | hu     | +                  | +                   |
| Jurkat              | T lymphocyte                 | hu     | -                  | _                   |
| Molt-4              | T lymphoblast                | hu     | -                  | +                   |
| HeLa                | Epithelial<br>adenocarcinoma | hu     | +                  | n. d.               |
| Primary<br>T- cells | T-cells                      | hu     | +                  | +                   |
| SHIP1 +/+           | Thymocytes                   | mu     | +                  | +                   |
| SHIP1 -/-           | Thymocytes                   | mu     | +                  | -                   |

hu, human; mu, murine; n.d., not determined