Redox Sulfur Chemistry of the Copper Chaperone Atox1 as Catalyzed by the Enzyme Glutaredoxin 1 is Regulated by Both the Reduction Potential of the Glutathione Couple GSSG/2GSH and the Availability of Cu(I)

Jens Brose[‡], Sharon La Fontaine[§], Anthony G Wedd[‡] and Zhiguang Xiao^{‡*}

*School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia and School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia

* To whom correspondence should be addressed: Tel.: (61 3) 9035-6072; Fax: (61 3) 9347 5180; E-mail: <u>z.xiao@unimelb.edu.au</u>

Supporting Information

Determination of K_D for variants hGrx1-C23S and -C26S

In a buffer containing $[Cu^{I}(Bca)_{2}]^{3-}$ with $p[Cu^{+}] \sim 13$, both variants hGrx1-C23S and hGrx1-C26S removed Cu(I) from the probe complex but the protein products precipitated. In the same metal buffer with the free Cu_{aq}^{+} buffered at a lower concentration ($p[Cu^{+}] \sim 14$), both variants competed for Cu(I) effectively and precipitation was slow. This allowed an estimation of their Cu(I) affinities via eqns 1 and 2 (Figure S1):-¹

$$[Cu^{I}L_{2}]^{3-} + P \longrightarrow Cu^{I-}P + 2L^{2-} \quad (L = Bca)$$
 (1)

$$\frac{[P]_{\text{total}}}{[Cu]_{\text{total}}} = K_{\rm D} \beta_2 \left(\frac{[L]_{\text{total}}}{[Cu^{\rm I}L_2]} - 2 \right)^2 [Cu^{\rm I}L_2] \left(1 - \frac{[Cu^{\rm I}L_2]}{[Cu]_{\text{total}}} \right) + 1 - \frac{[Cu^{\rm I}L_2]}{[Cu]_{\text{total}}}$$
(2)

where the term [Cu^IL₂] is the equilibrium concentration of probe complex [Cu^IL₂]³⁻ in eqn 1 and may be determined directly from the solution absorbance at equilibrium under the condition that this complex is the only absorbing species. The other terms in eqn 2 are the known total concentrations of the relevant species. Curve fitting of the experimental data to eqn 2 based on the known β_2 for [Cu^I(Bca)₂]³⁻ (10^{17.2} M⁻²)² estimated $K_D = 10^{-13.5}$ M and $10^{-13.3}$ M for hGrx1-C23S and hGrx1-C26S, respectively (Figure S1). However, such weaker Cu(I) binding caused protein precipitation readily, likely due to considerable conformation change upon Cu(I) binding.

References

- Xiao, Z.; Gottschlich, L.; van der Meulen, R.; Udagedara, S. R.; Wedd, A. G. *Metallomics* 2013, 5, 501-13.
- Xiao, Z.; Brose, J.; Schimo, S.; Ackland, S. M.; La Fontaine, S.; Wedd, A. G. J. Biol. Chem. 2011, 286, 11047-55.

Figure S1. Determination of the Cu(I) affinities for hGrx1-C23S (empty circle) and hGrx1-C26S (solid circle). The probe complex anion $[Cu^{I}(Bca)_{2}]^{3-}$ was prepared with following compositions: $[Cu]_{tot} = 33 \ \mu\text{M}$; $[Bca]_{tot} = 200 \ \mu\text{M}$ and $[NH_2OH]_{tot} = 1.0 \ \text{mM}$ in KPi buffer (50 mM, pH 7.0). The solid traces are the fitting curves of the experimental data points to eqn (2) which generate Cu(I) $\log K_{\rm D} = -13.5$ and -13.3 for hGrx1-C23S and hGrx1-C26S, respectively. Shown in empty triangles are the experimental data points with hGrex1-wt under the same conditions.

Figure S2. Determination of Cu(I) binding affinity in KPi buffer (25 mM, pH 7.0, 100 mM NaCl). Decrease in $[Cu^{I}(Bcs)_{2}]^{3-}$ concentration (total composition: $[Cu]_{tot} = 31.4 \ \mu\text{M}$; $[Bcs]_{tot} = 80 \ \mu\text{M}$; $[NH_{2}OH]_{tot} = 1.0 \ \text{mM}$) with increasing concentrations of: (a) hGrx1-wt; (b) hGrx1-tm. The experimental data points shown in empty circles in (ii) were obtained from a 1:1 dilution of each solution in (i). The solid traces are the fitting curves of the experimental data points to eqn (2) and these curve-fittings derive a consistent Cu(I) $\log K_{\rm D} = -15.6 \pm 0.1$ for both hGrx1-wt and hGrx1-tm proteins. The dash trace in (ii) is the simple 1:1 dilution curve of data set (i).

Figure S3. Comparison of oxidation rate of Atox1 (35 μ M) by GSSG (400 μ M) with catalyst (each 2.0 μ M) of hGrx1-wt (shown in blue trace), hGrx1-C26S (shown in green trace) or no catalyst (shown in red trace) in KPi buffer (20 mM; pH 7.0; NH₂OH, 1.0 mM) with free [Cu_{aq}⁺] buffered to: (a) $\geq 10^{-16}$ M by Cu_{aq}⁺-buffer of [Cu(I)]_{tot} = 35 μ M and [Bca]_{tot} = 500 μ M; (b) $\geq 10^{-17}$ M by Cu_{aq}⁺-buffer of [Cu(I)]_{tot} = 35 μ M and [Bcs]_{tot} = 500 μ M; (b) $\geq 10^{-17}$ M by Cu_{aq}⁺-buffer of [Cu(I)]_{tot} = 35 μ M and [Bcs]_{tot} = 140 μ M; (c) no Cu_{aq}⁺-buffer. The rates in (a,b) were followed in real time by increase in concentration of the Cu(I) probe [Cu^I(Bca)₂]³⁻ whereas the rate in (c) by quenching the oxidation at various reaction time points with the same probe [Cu^I(Bca)₂]³⁻ but less [Bca]_{tot} = 100 μ M (see Experimental section for details). Inset: scheme for the assay that consists of the catalysis (framed in green dots) and the associated Cu_{aq}⁺-buffering and Cu(I)-transferring detection (framed in red dots).

Figure S4. ESI-MS analysis of the oxidized forms of hGrx1 (10 μ M) upon oxidation by GSSG in the following redox buffer (potential *E*): (a) GSSG (0.06 mM)/GSH (3.88 mM) (-222 mV); (b) GSSG (0.68 mM)/GSH (0.64 mM) (-145 mV); (c) GSSG (0.39 mM)/GSH (0.03 mM) (-69 mV). Each reaction mixture was incubated overnight under anaerobic condition in KPi (50 mM, pH 7.0), followed by alkylation with iodoacetamide (~10 mM) and ESI-MS analysis.

Figure S5. Control experiments for comparison of ESI-MS peak intensities from a solution mixture containing equal molar concentrations of reduced and oxidised forms (both pre-alkylated and quantified separately before mixing) of either Atox1 (a) or hGrx1-tm (b).

Figure S6. Solution spectra in KPi buffer (50 mM, pH 7.0; 100 μ M NH₂OH) with following further composition:

(a) $[Cu^{I}(Bcs)_{2}]^{3-}$ generated from $[Cu]_{tot} = 37 \ \mu M$ and $[Bcs] = 100 \ \mu M$;

(b) as (a) but with extra GSH (800 μ M) (no change with addition of extra 50 μ M hGrx1-C26S);

(c) as (b) but with extra hGrx1-tm (50 μ M)

(d) as (b) but with extra fully reduced Atox1 (50 μ M).

The red dashed line indicated the solution absorbance when Atox1-(SS) (50 μ M) reached a reduction equilibrium in solution (b).

Protein	Formula	MW (Da) (calc.)	MW (Da) (found)
hGrx1-wt	$C_{516}H_{845}N_{143}O_{152}S_5$	11,644.5	11,644.7
hGrx1-C23S	$C_{516}H_{845}N_{143}O_{153}S_4$	11,628.4	11,628.4
hGrx1-C26S	$C_{516}H_{845}N_{143}O_{153}S_4$	11,628.4	11,628.8
hGrx1-C23,26S (hGrx1-dm)	$C_{516}H_{845}N_{143}O_{154}S_3$	11612.4	11,612.2
hGrx1-C8,79,83S (hGrx1-tm)	$C_{516}H_{845}N_{143}O_{155}S_2$	11596.3	11,596.3
Grx1-tm S	$C_{516}H_{843}N_{143}O_{155}S_2$	11,594.3	11,594.2
Grx1-tm SA SA	$C_{520}H_{851}N_{145}O_{157}S_2$	11,710.3	11,710.1
Grx1-tm SSG	$C_{528}H_{863}N_{147}O_{162}S_3$	11,958.6	11,958.7
Atox1	$C_{322}H_{531}N_{85}O_{101}S_6$	7,401.6	7,401.7
	$C_{317}H_{522}N_{84}O_{100}S_5$	7,270.4	7,270.5
HS-Atox1 S	$C_{322}H_{529}N_{85}O_{101}S_6$	7,399.6	7,399.8
	$C_{317}H_{520}N_{84}O_{100}S_5$	7,268.4	7,268.6
AS-Atox1 S	$C_{324}H_{532}N_{86}O_{102}S_6$	7,456.6	7,456.6
	$C_{319}H_{523}N_{85}O_{101}S_5$	7,325.4	7,325.5
AS-Atox1 SA	$C_{328}H_{540}N_{88}O_{104}S_6$	7,572.7	7,572.6
	$C_{323}H_{531}N_{87}O_{103}S_5$	7,441.5	7,441.3
GSS-Atox1 S	$C_{332}H_{544}N_{88}O_{107}S_7$	7,704.8	7,704.6
	$C_{327}H_{535}N_{87}O_{106}S_6$	7,573.6	7,573.7
AS-Atox1 SSG SSA; GSS-Atox1 SA	$C_{336}H_{552}N_{90}O_{109}S_7$	7,821.0	7,821.0
	$C_{331}H_{543}N_{89}O_{108}S_6$	7,689.8	7,689.9
HS-Atox1 SSG SSG; GSS-Atox1 SH	$C_{342}H_{561}N_{91}O_{113}S_8$	8,012.2	8,012.1
	$C_{337}H_{552}N_{90}O_{112}S_7$	7,881.0	7,881.0
GSS-Atox1 SSG	$C_{352}H_{576}N_{94}O_{119}S_9$	8,317.5	8,317.3
	$C_{347}H_{567}N_{93}O_{118}S_8$	8,186.3	8,186.2
HS Grx1-tm	$C_{838}H_{1374}N_{228}O_{256}S_8$	18,995.7	18,995.5
HS-Atox1 SH	$C_{833}H_{1365}N_{227}O_{255}S_7$	18,864.5	18,864.3
HS Grx1-tm S Atox1-S-S	$C_{838}H_{1372}N_{228}O_{256}S_8$	18,993.7	ND
	$C_{833}H_{1363}N_{227}O_{255}S_7$	18,862.5	ND

Table S1. ESI-MS data of protein species ^a

^{*a*} -SA: acetamidated cysteine thiol; -SSG: glutathionylated cysteine thiol; ND: not detected.