Supplementary Information

A dual-targeting, apoptosis-inducing organometallic halfsandwich iridium anticancer complex

Vojtech Novohradsky,^{a,b} Lenka Zerzankova,^a Jana Stepankova,^a Anna Kisova,^a Hana Kostrhunova^a, Zhe Liu,^{c,d} Peter J. Sadler,^c Jana Kasparkova^b, Viktor Brabec^{*,a}

^{*a*} Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic. Fax: +420 541240499; Tel: +420 541517178; E-mail: jana@ibp.cz

^b Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic

^c Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

^d Current address: Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland

To whom correspondence should be addressed: brabec@ibp.cz

Cytotoxicyty testing:

MTT assay: Cell death was evaluated using a system based on the tetrazolium compound MTT. Briefly, after the treatment period, 10 μ L of a freshly diluted MTT solution (2.5 mg mL⁻¹) was added to each well, and the plate was incubated at 37 °C in a humidified 5 % CO₂ atmosphere for 4 h. At the end of the incubation period, the medium was removed, and the formazan product was dissolved in 100 μ L of dimethyl sulfoxide. Cell viability was evaluated by measurement of the absorbance at 570 nm, using a SUNRICE Tecan absorbance reader (Schoeller). Compound concentrations that produce 50 % cell growth inhibition (IC₅₀) were calculated from curves constructed by plotting cell survival (%) versus drug concentration (μ M). The reading values were converted to the percentage of the control (percentage cell survival). Cytotoxic effects were expressed as IC₅₀. Concentrations of treated complexes in medium during treatment were verified by FAAS.

Sulphorhodamine B (SRB) assay. After the treatment period, the adherent cells were washed twice with PBS and fixed with 10% trichloroacetic acid (TCA). Suspension human leukemia HL-60 cells were fixed with 50% TCA added directly to the whole treated volume without any previous PBS washing. After 1 h, the fixed cells were washed with MiliQ water and incubated with 0.4% SRB for 30 min. Wells were washed three times with 1% acetic acid and SRB stained cellular proteins were dissolved with Tris base (pH 10.5). The absorbance at 570 nm was measured using a SUNRICE Tecan absorbance reader (Schoeller). IC₅₀ values were calculated from curves constructed by plotting cell survival (%) versus drug concentration (μ M). The reading values were converted to the percentage of control (% cell survival). Cytotoxic effects were expressed as IC₅₀. Concentrations of treated complexes in medium during treatment were verified by FAAS.

Neutral red (NR) assay: After the treatment period, 20 μ L of a 0.33% solution of neutral red in phosphate buffered saline (PBS) was added to each well with adherent cells and the plate was incubated at 37 °C in a humidified 5 % CO₂ atmosphere for 2 h. Suspension human leukemia HL-60 cells were fixed prior the staining with 50% TCA. Afterwards, the dye containing medium was carefully removed and the cells were quickly rinsed with neutral red assay fixative (0.1% CaCl₂ in 0.5% formaldehyde). The incorporated dye was then solubilized in 200 μ L of 1% acetic acid in 50% ethanol, allowed to stand for 10 min at room temperature and the absorbance was measured at λ =540 nm with a SUNRICE Tecan absorbance reader (Schoeller). The background absorbance of the plates at 690 nm was also measured and subtracted from 540 nm measurement. IC₅₀ values were calculated from curves constructed by plotting cell survival (%) versus drug concentration (μ M). The reading values were converted to the percentage of the control (percentage cell survival). Cytotoxic effects were expressed as IC₅₀. Concentrations of treated complexes in medium during treatment were verified by FAAS.

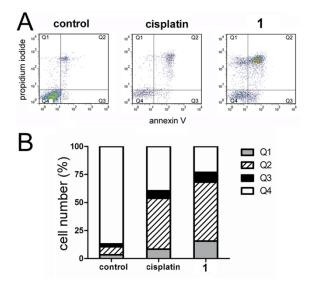
Table S1A: IC_{50} Values (μ M) obtained by MTT assay for complex **1** and cisplatin after 72 h of treatment. Data are expressed as mean ± SD values of three independent experiments, each made in triplicate

	A2780	A2780cisR	RFª	HL-60	MCF-7	CHO-K1	TI ^b
1	0.78 ± 0.01	0.97 ± 0.03	1.3	0.41 ± 0.07	2.01 ± 0.11	32.5 ± 4.9	41.7
cisplatin	2.64 ± 0.47	15.0 ± 1.1	4.8	0.47 ± 0.07	22.9 ± 2.9	14.6 ± 1.6	5.5

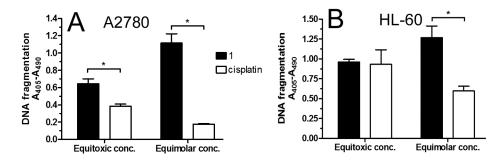
^aResistance factor, defined as IC_{50} (resistant, A2780cisR)/ IC_{50} (sensitive, A2780). ^bTherapeutic Index calculated as a ratio of the IC_{50} of normal, noncancerous cells (CHO-K1 or HSF), to the IC_{50} obtained for cancer cells (A2780).

Table S1B: IC_{50} Values (μ M) obtained by Neutral red assay for complex **1** and cisplatin after 72 h of the treatment. Data are expressed as mean ± SD values of three independent experiment, each made in triplicate

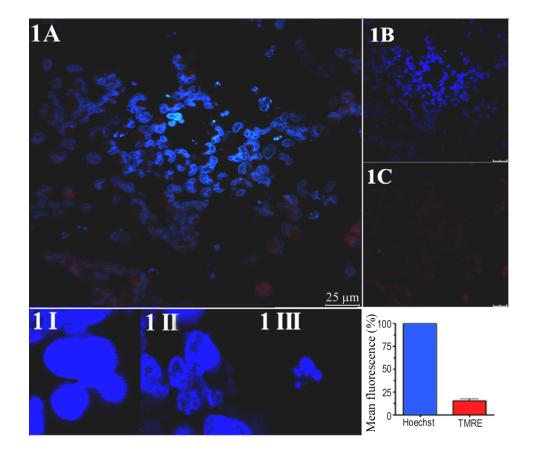
	A2780	A2780cisR	RFª	HL-60	MCF-7	CHO-K1	ΤI ^b
1	0.45 ± 0.07	0.46 ± 0.06	1.0	0.26 ± 0.08	1.20 ± 0.04	53.0 ± 6.5	117.8
cisplatin	0.66 ± 0.15	2.65 ± 0.21	4.0	0.61 ± 0.08	7.9 ± 1.2	34.6 ± 4.8	52.4

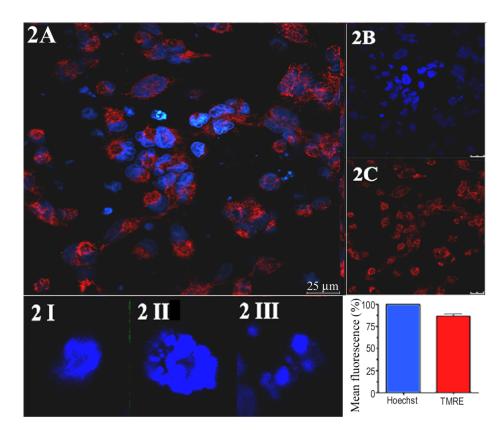

^aResistance factor, defined as IC₅₀ (resistant, A2780cisR)/IC₅₀ (sensitive, A2780).

^bTherapeutic Index calculated as a ratio of the IC_{50} of normal, noncancerous cells (CHO-K1 or HSF), to the IC_{50} obtained for cancer cells (A2780).


Table S2: IC_{50} Values (μ M) in A2780 cells obtained by MTT assay for complex **1** and cisplatin as dependent on treatment interval. The data are expressed as mean ± SD values of three independent experiments, each made in triplicate

	24 h	48 h	72 h
1	1.84 ± 0.45	0.83 ± 0.06	0.78± 0.01
cisplatin	20.8 ± 6.4	2.79 ± 0.65	2.64 ± 0.47
A	ontrol	1	cisplatin
24h	Colone (PETra) 20	a collour picture and the collour of	The colores of the state
48h			A
72h	Colored Parcels	P college plane, where the	Colline (Con a) and an
B	ontrol	1	cisplatin
24h	La	a define places a define a	The colour place a man
48h	La		Columption generate
72h	Branch Branch	and the second s	


Fig. S1. Flow cytometric detection of the cell-cycle profiles in A2780 and HL60 cells. Effects of equitoxic doses (IC_{50}) of **1** and cisplatin on cell cycle distribution of A2780 (A) or HL-60 (B) cells. Left panels, untreated (control) A2780 or HL-60 cells; middle panels, A2780 or HL 60 cells treated with 0.8 μ M or 0.5 μ M **1**, respectively, for 24, 48 or 72 h; right panels, A2780 or HL-60 cells treated with 3.1 μ M or 0.5 μ M cisplatin for 24, 48 or 72 h.



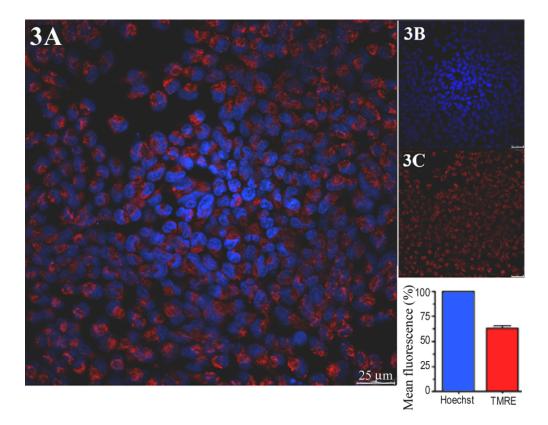

Fig. S2. Quantification of apoptosis after 48-h exposure of A27820 cells to 1 or cisplatin. A. Induction of apoptosis in A2780 cells after treatment with **1 or** cisplatin. Cells were untreated (control) or treated with 20 μ M ($IC_{90,48h}$) cisplatin or 2.6 μ M ($IC_{90,48h}$) **1** for 48 h. B. Quantitative evaluation. Quadrant 1, PI-positive (cells undergoing necrosis); Quadrant 2, Annexin V-positive /PI-positive (cells in the late period of apoptosis and undergoing necrosis); Quadrant 3, Annexin V positive/ PI-negative (cells in the early period of apoptosis); Quadrant 4, Annexin V –negative/ PI-negative (living cells). The experiment was made in triplicate.

Fig S3. DNA apoptotic fragmentation induced by 1 and cisplatin quantified by a specific ELISA colorimetric kit. Comparison of the efficiency of **1** and cisplatin in inducing apoptosis in A2780 (A) or HL60 (B). Cells were treated with equimolar (3 μ M) or equitoxic (IC_{50,24h}) concentrations for 24 h. The symbol (*) denotes significant difference (p < 0.01). Experiments were made in triplicate.

Fig. S4. Multi-parameter apoptosis assay. Confocal microphotographs obtained after the treatment of A2780 cells with complex **1** (1), cisplatin (2) at the concentration corresponding to $IC_{90,48hr}$ or for untreated cells (3). A – a merge output of both fluorescence channels, B - cell nuclei stained with Hoechst dye, C - fluorescence signal of TMRE for detection of mitochondrial membrane potential. Typical features of apoptosis are shown at panels 1 and 2: I - pyknosis (nucleus condensation), II - karyorrhexis (nucleus fragmentation) and III - presence of apoptotic bodies. Fluorescence analysis is on the right bottom part of the picture, signals from the individual channels were normalized to fluorescence of Hoechst dye.