Supporting Information

Bimodal-hybrid heterocyclic amine targeting oxidative pathways and copper mis-regulation in Alzheimer’s disease.

Paulina Gonzalez1, Viviana C.P. da Costa1, Kimberly Hyde1, Qiong Wu2, Onofrio Annunziata1, Josep Rizo2, Giridhar Akkaraju3, Kayla N. Green1*

Table of Contents.

Figure S1. Screening for biocompatibility of cyclen using the MTT assay, with 10 fold dilution concentrations, in HT-22 cell line.

Figure S2. Protective effect of 1 against Aβ associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. Aβ 15 µM; 1 50, 80, 100, 120 µM.

Figure S3. Protective effect of 1 against copper associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. CuCl2 15 µM; 1 50, 80, 100, 120 µM.

Figure S4. Evaluation of GSH levels in HT-22 Neuronal Cells measured by GSH-Glo™ Kit: (a) Treatment of HT-22 neuronal cells with BSO results in a dose dependent decrease in GSH. (b) The addition of 1 at 80, 100, 120 µM does not change GSH levels.

Figure S5. DCFH-DA Antioxidant assay of HT-22 neuronal cells after 12 hour exposure to Aβ + Cu [15 µM each, final conc.] followed by addition of 1. n=8 for each sample. (Note: DCFH-DA interacts with free copper ions to give unreliable readings, therefore this control was excluded.)

Table S1. Calculated K\textsubscript{ow} values to determine BBB permeability of cyclen.

Figure S6. HSQC spectra of 15N-Aβ\textsubscript{1-40} (black) and 15N-Aβ\textsubscript{1-40} and 1 (1.5 eq.) (red). (a) full spectrum, (b) zoom of 15N 120-125 ppm region and (c) change in intensity for residues in Aβ\textsubscript{1-40} peptide in the presence of 1 when compared to 15N-Aβ\textsubscript{1-40} signal intensities alone.

Experimental: Details of Spectrophotometric determination of K (mM-1) for cyclen and 1.
Figure S1. Screening for biocompatibility of cyclen using the MTT assay, with 10 fold dilution concentrations, in HT-22 cell line.

Figure S2. Protective effect of 1 against Aβ associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. Aβ 15 μM; 1 50, 80, 100, 120 μM.
Figure S3. Protective effect of 1 against copper associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. CuCl$_2$ 15 µM; 1 50, 80, 100, 120 µM.
Figure S4. Evaluation of GSH levels in HT-22 Neuronal Cells measured by GSH-Glo™ Kit: (a) Treatment of HT-22 neuronal cells with BSO results in a dose dependent decrease in GSH. (b) The addition of 1 at 80, 100, 120 µM does not change GSH levels.
Figure S5. DCFH-DA Antioxidant assay of HT-22 neuronal cells after 12 hour exposure to Aβ + Cu [15 μM each, final conc.] followed by addition of 1. n=8 for each sample. (Note: DCFH-DA interacts with free copper ions to give unreliable readings, therefore this control was excluded.)

<table>
<thead>
<tr>
<th>Log K_{ow} fragment description</th>
<th>Coefficient</th>
<th>Value obtained for 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CH2- [aliphatic carbon]</td>
<td>0.4911</td>
<td>3.9288</td>
</tr>
<tr>
<td>-NH- [aliphatic attach]</td>
<td>-1.4962</td>
<td>-5.9848</td>
</tr>
<tr>
<td>Equation Constant</td>
<td></td>
<td>0.2290</td>
</tr>
<tr>
<td>LogK_{ow}</td>
<td></td>
<td>-1.8270</td>
</tr>
</tbody>
</table>

Table S1. Calculated K_{ow} values to determine BBB permeability of cyclen.
Figure S6. HSQC spectra of 15N-Aβ$_{1-40}$ (black) and 15N-Aβ$_{1-40}$ plus 1 (1.5 eq.) (red). (a) Full spectrum. (b) Expansion of the central region of the spectrum, plotted at higher contour levels than in panel (a) to emphasize the stronger intensities of the red cross-peaks compared to the corresponding black cross-peaks. (c) Changes in the HSQC cross-peak intensities of the Aβ$_{1-40}$ peptide caused by addition of 1 (1.5 eq.). The ratios between the cross-peak intensities of the Aβ$_{1-40}$ peptide plus 1.5 eq. of 1 (I) and those of the Aβ$_{1-40}$ peptide alone (I$_0$) are plotted as a function of the residue number.
Details of Spectrophotometric determination of K (mM$^{-1}$) for cyclen and 1.

Our data were examined using the one-to-one binding stoichiometry model: $M + L \rightleftharpoons ML$, where M, L and ML represent free copper, free ligand and copper-ligand complex, respectively. The binding constant, K, can then be expressed in terms of molar concentrations of each component:

$$K = \frac{[ML]}{[M][L]} \quad (1)$$

where $[M]$, $[L]$ and $[ML]$ are the corresponding molar concentrations. The total copper concentration, C_M, is related to $[M]$ by the mass balance $C_M = [M] + [ML]$ and the total ligand concentration C_L to $[L]$ by the mass balance $C_L = [L] + [ML]$.

In order to express $[M]$ as a function of K, C_M and C_L, it is useful to start by relating the fraction of copper-ligand complex, $\frac{[ML]}{C_L}$, to the binding constant using equation 1 and the previous mass balances:

$$\frac{C_M - [M]}{C_L} = \frac{K[M]}{1 + K[M]} \quad (2)$$

Equation 2 can be rearranged as a quadratic equation with respect to $[M]$ and its positive root can be calculated:

$$[M] = \frac{-(1 - K C_M + K C_L) + \sqrt{(1 - K C_M + K C_L)^2 + 4 K C_M}}{2 K} \quad (3)$$

At a given wavelength, the copper extinction coefficient, ε, in the presence of ligand, can be expressed as the weighted average between that of the free copper ions, $\varepsilon_{\text{free}}$, and bound copper, $\varepsilon_{\text{bound}}$, according to:

$$\varepsilon = \frac{[M]}{C_M} \varepsilon_{\text{free}} + \frac{[ML]}{C_M} \varepsilon_{\text{bound}} \quad (4)$$

In equation 4, it is useful to define $[M]/C_M$ has the fraction of free copper ions in solution, α_{free}. Therefore, we can rewrite equation 4 and express $\varepsilon/\varepsilon_{\text{free}}$ has a function of α_{free}.

$$\frac{\varepsilon}{\varepsilon_{\text{free}}} = \alpha_{\text{free}} + (1 - \alpha_{\text{free}})R \quad (3)$$

where and $R = \varepsilon_{\text{bound}}/\varepsilon_{\text{free}}$ and

$$\alpha_{\text{free}} = \frac{-(1 - K C_M + K C_L) + \sqrt{(1 - K C_M + K C_L)^2 + 4 K C_M}}{2 K C_M} \quad (4)$$

The method of least squares (using KaleidaGraph software) based on equations 3 and 4 was applied to our experimental data to determine K and R (Table S3). The accuracy of the prepared 1 solutions concentration was assessed by substituting in equation (4) C_L with $\hat{f} C_L'$, where C_L' is the measured 1 concentration by weight and \hat{f} is a corrective factor that takes into account that part of the total weighed material is impurity; hence, $\hat{f} \leq 1$. This value of \hat{f} is consistent with the actual concentration value extracted from NMR, being approximately 10% lower than that determined by sample weight.

Table S3. Fitting model parameters associated with copper-ligand binding.

<table>
<thead>
<tr>
<th></th>
<th>Cyclen1</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/mM$^{-1}$</td>
<td>>100</td>
<td>6.4±1.7</td>
</tr>
<tr>
<td>R</td>
<td>179±1</td>
<td>14.7±0.2</td>
</tr>
<tr>
<td>\hat{f}</td>
<td>1.05±0.01</td>
<td>0.88±0.02</td>
</tr>
</tbody>
</table>

1the uncertainties are standard deviations.