Supporting Information

Naphthalene-based Water-soluble Fluorescent Boronic Acids Suitable for Ratiometric and Off-on Sensing of Saccharides at Physiological pH

Xingming Gao, Yanling Zhang, and Binghe Wang*

Department of Chemistry and Center for Drug Design, Georgia State University, Atlanta, GA 30303. Fax: 404 654 5827; Tel: 404 651 0289; Email: wang@gsu.edu
1H and 13C NMR spectra of 5-DMANBA (I) and related intermediates

Figure S1. 1H NMR of 5-DMANBA (I) (300 MHz, CD$_3$OD)
Figure S2. 13C NMR of 5-DMANBA (1) (75 MHz, CD$_3$OD)
Figure S3. 1H NMR of 5-nitro-1-bromonaphthalene (4) (300 MHz, CDCl$_3$)

Figure S4. 13C NMR of 5-nitro-1-bromonaphthalene (4) (75 MHz, CDCl$_3$)
Figure S5. 1H NMR of 5-amino-1-bromonaphthalene (5) (400 MHz, CDCl$_3$)
Figure S6. 13C NMR of 5-amino-1-bromonaphthalene (5) (100 MHz, CDCl$_3$)
Figure S7. 1H NMR of 5-(dimethylamino)-1-bromonaphthalene (6) (300 MHz, CDCl$_3$)
Figure S8. 13C NMR of 5-(dimethylamino)-1-bromonaphthalene (6) (75 MHz, CDCl$_3$)