Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2005 data_global _journal_name_full 'New J.Chem.(Nouv.J.Chim.)' _journal_coden_Cambridge 0440 _publ_contact_author_name C.Wilson _publ_contact_author_address ; ISIS Facility CCLRC Rutherford Appleton Laborator Chilton Didcot Oxon OX11 0QX UK ; _publ_contact_author_email CHICK@CHEM.GLA.AC.UK _publ_section_title ; Neutron diffraction investigations of L- and D-alanine at different temperatures: The search for structural evidence for parity violation ; loop_ _publ_author_name 'C. Wilson' 'Minakshi Ghosh' 'L. Johnson' 'Dean Myles' 'Wenging Wang.' data_lalart _database_code_depnum_ccdc_archive 'CCDC 278464' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H7 N O2' _chemical_formula_weight 89.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source C C 6.646 International Tables Vol C Table 4.4.4.1 H H -3.739 International Tables Vol C Table 4.4.4.1 N N 9.360 International Tables Vol C Table 4.4.4.1 O O 5.803 International Tables Vol C Table 4.4.4.1 _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P212121 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' _cell_length_a 6.036(3) _cell_length_b 12.342(5) _cell_length_c 5.788(3) _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _cell_volume 431.18 _cell_formula_units_Z 4 _cell_measurement_temperature 295(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 5.0 _exptl_crystal_size_mid 3.0 _exptl_crystal_size_min 2.0 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.371 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 5.87 _exptl_absorpt_coefficient_mu '2.610, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.10 _exptl_absorpt_correction_T_max 0.64 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.34 + 1.27 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.55 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 295(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 2495 _diffrn_reflns_av_R_equivalents 0.076 _diffrn_reflns_av_sigmaI/netI 0.0199 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 25 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 8.50 _diffrn_reflns_theta_max 57.99 _reflns_number_total 1008 _reflns_number_gt 1008 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.80 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.470 _refine_ls_number_reflns 1008 _refine_ls_number_parameters 118 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0784 _refine_ls_R_factor_gt 0.0784 _refine_ls_wR_factor_ref 0.1830 _refine_ls_wR_factor_gt 0.1830 _refine_ls_goodness_of_fit_ref 1.780 _refine_ls_restrained_S_all 1.780 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group H2 H -0.5614(12) 0.2473(3) -0.6618(8) 0.0402(11) Uani 1 1 d . . . H6 H -0.2129(14) 0.1916(5) -0.7878(9) 0.0454(13) Uani 1 1 d . . . H4 H -0.4064(11) 0.1499(4) -0.9831(7) 0.0396(11) Uani 1 1 d . . . O2 O -0.5493(6) 0.1852(2) -0.2386(4) 0.0343(6) Uani 1 1 d . . . N1 N -0.3455(3) 0.13811(11) -0.8143(2) 0.0271(3) Uani 1 1 d . . . C2 C -0.5236(4) 0.16133(13) -0.6446(3) 0.0237(4) Uani 1 1 d . . . C1 C -0.4394(4) 0.14156(12) -0.3985(3) 0.0235(3) Uani 1 1 d . . . H7 H -0.7904(15) 0.1096(8) -0.8684(11) 0.0571(17) Uani 1 1 d . . . H5 H -0.856(2) 0.1045(10) -0.5687(16) 0.068(2) Uani 1 1 d . . . C3 C -0.7260(6) 0.0917(2) -0.6977(4) 0.0353(5) Uani 1 1 d . . . H1 H -0.2907(13) 0.0591(4) -0.8013(10) 0.0424(12) Uani 1 1 d . . . O1 O -0.2720(6) 0.0849(2) -0.3710(4) 0.0351(6) Uani 1 1 d . . . H3 H -0.684(2) 0.0062(5) -0.6949(15) 0.060(2) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 H2 0.054(4) 0.0304(13) 0.0360(18) 0.0023(11) -0.0021(18) 0.0106(17) H6 0.042(4) 0.057(3) 0.038(2) -0.0011(19) -0.0008(19) -0.009(2) H4 0.047(3) 0.050(2) 0.0216(12) 0.0016(12) 0.0026(12) 0.0024(19) O2 0.0418(19) 0.0419(11) 0.0192(7) -0.0025(6) -0.0001(8) 0.0095(11) N1 0.0328(9) 0.0290(4) 0.0196(4) -0.0002(3) 0.0003(4) 0.0023(5) C2 0.0283(11) 0.0238(5) 0.0189(5) 0.0004(4) -0.0011(5) 0.0027(5) C1 0.0305(11) 0.0223(5) 0.0177(5) 0.0002(4) -0.0016(4) 0.0010(6) H7 0.043(5) 0.087(5) 0.041(3) -0.003(3) -0.012(3) -0.011(3) H5 0.045(5) 0.096(6) 0.063(4) -0.008(4) 0.014(3) -0.014(4) C3 0.0336(15) 0.0441(10) 0.0280(8) -0.0019(7) -0.0024(7) -0.0083(9) H1 0.043(4) 0.0402(19) 0.044(2) 0.0019(15) 0.006(2) 0.0072(19) O1 0.0421(19) 0.0362(10) 0.0271(9) 0.0036(7) -0.0038(9) 0.0120(10) H3 0.063(6) 0.044(2) 0.071(4) -0.005(3) -0.002(4) -0.014(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O2 C1 1.260(3) . ? N1 C2 1.484(3) . ? N1 H6 1.048(7) . ? N1 H4 1.054(5) . ? N1 H1 1.033(5) . ? C2 C3 1.525(4) . ? C2 C1 1.532(2) . ? C2 H2 1.090(4) . ? C1 O1 1.239(4) . ? C3 H7 1.085(7) . ? C3 H5 1.092(10) . ? C3 H3 1.085(8) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 N1 H6 109.5(4) . . ? C2 N1 H4 109.5(4) . . ? H6 N1 H4 108.4(5) . . ? C2 N1 H1 111.5(4) . . ? H6 N1 H1 109.8(6) . . ? H4 N1 H1 108.1(4) . . ? N1 C2 C3 109.76(17) . . ? N1 C2 C1 110.14(17) . . ? C3 C2 C1 111.30(17) . . ? N1 C2 H2 106.2(4) . . ? C3 C2 H2 111.3(4) . . ? C1 C2 H2 108.0(3) . . ? O1 C1 O2 125.2(2) . . ? O1 C1 C2 118.69(19) . . ? O2 C1 C2 116.1(2) . . ? C2 C3 H7 110.8(5) . . ? C2 C3 H5 110.7(6) . . ? H7 C3 H5 109.7(9) . . ? C2 C3 H3 110.9(7) . . ? H7 C3 H3 107.2(7) . . ? H5 C3 H3 107.4(9) . . ? _refine_diff_density_max 0.205 _refine_diff_density_min -0.158 _refine_diff_density_rms 0.033 data_dalart _database_code_depnum_ccdc_archive 'CCDC 278465' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H7 N O2' _chemical_formula_weight 89.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source C C 6.646 International Tables Vol C Table 4.4.4.1 H H -3.739 International Tables Vol C Table 4.4.4.1 N N 9.360 International Tables Vol C Table 4.4.4.1 O O 5.803 International Tables Vol C Table 4.4.4.1 _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P212121 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' _cell_length_a 6.043(3) _cell_length_b 12.337(5) _cell_length_c 5.784(3) _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _cell_volume 431.21 _cell_formula_units_Z 4 _cell_measurement_temperature 295(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 3.0 _exptl_crystal_size_mid 3.0 _exptl_crystal_size_min 2.0 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.371 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 5.87 _exptl_absorpt_coefficient_mu '2.610, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.26 _exptl_absorpt_correction_T_max 0.64 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.34 + 1.27 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.55 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 295(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 1818 _diffrn_reflns_av_R_equivalents 0.071 _diffrn_reflns_av_sigmaI/netI 0.0135 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 22 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 10 _diffrn_reflns_theta_min 7.80 _diffrn_reflns_theta_max 48.03 _reflns_number_total 836 _reflns_number_gt 836 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.80 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.042 _refine_ls_number_reflns 836 _refine_ls_number_parameters 119 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0844 _refine_ls_R_factor_gt 0.0844 _refine_ls_wR_factor_ref 0.2079 _refine_ls_wR_factor_gt 0.2079 _refine_ls_goodness_of_fit_ref 2.143 _refine_ls_restrained_S_all 2.143 _refine_ls_shift/su_max 0.003 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group H2 H -0.5643(12) 0.2478(6) -0.6586(15) 0.0445(13) Uani 1 1 d . . . H6 H -0.2145(10) 0.1917(6) -0.7898(15) 0.0438(13) Uani 1 1 d . . . H4 H -0.4068(11) 0.1496(6) -0.9859(14) 0.0424(12) Uani 1 1 d . . . O2 O -0.5503(6) 0.1850(3) -0.2381(7) 0.0369(7) Uani 1 1 d . . . N1 N -0.3444(3) 0.13804(15) -0.8143(4) 0.0279(3) Uani 1 1 d . . . C2 C -0.5231(4) 0.1614(2) -0.6437(4) 0.0254(4) Uani 1 1 d . . . C1 C -0.4397(4) 0.14123(18) -0.3973(5) 0.0250(4) Uani 1 1 d . . . H7 H -0.7904(16) 0.1108(12) -0.868(2) 0.065(3) Uani 1 1 d . . . H5 H -0.8589(14) 0.1052(11) -0.571(2) 0.066(3) Uani 1 1 d . . . C3 C -0.7256(5) 0.0918(3) -0.6959(7) 0.0364(6) Uani 1 1 d . . . H1 H -0.2879(11) 0.0593(6) -0.8034(15) 0.0430(13) Uani 1 1 d . . . O1 O -0.2707(6) 0.0848(3) -0.3713(7) 0.0354(7) Uani 1 1 d . . . H3 H -0.6793(17) 0.0043(8) -0.695(2) 0.063(2) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 H2 0.056(3) 0.037(2) 0.041(4) 0.0022(19) 0.002(3) 0.010(2) H6 0.042(2) 0.051(3) 0.039(4) 0.003(2) 0.002(2) -0.009(2) H4 0.048(2) 0.052(3) 0.027(3) 0.0026(19) -0.002(2) 0.002(2) O2 0.0442(15) 0.0443(18) 0.0221(18) -0.0024(10) -0.0016(12) 0.0111(12) N1 0.0324(6) 0.0312(7) 0.0199(8) 0.0008(5) 0.0011(6) 0.0011(5) C2 0.0302(8) 0.0257(9) 0.0204(11) 0.0006(6) -0.0019(7) 0.0024(6) C1 0.0325(8) 0.0238(9) 0.0186(12) 0.0000(6) -0.0030(7) 0.0010(6) H7 0.056(4) 0.096(7) 0.045(6) 0.001(5) -0.013(4) -0.018(4) H5 0.045(3) 0.092(8) 0.062(7) -0.005(5) 0.002(3) -0.014(4) C3 0.0339(9) 0.0457(15) 0.0296(16) -0.0020(10) -0.0040(10) -0.0078(9) H1 0.046(2) 0.040(3) 0.043(4) 0.000(2) 0.000(3) 0.012(2) O1 0.0411(13) 0.0382(15) 0.0270(16) 0.0040(10) -0.0064(11) 0.0099(11) H3 0.075(5) 0.047(4) 0.067(7) 0.003(4) -0.011(5) -0.022(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O2 C1 1.259(4) . ? N1 C2 1.491(3) . ? N1 H6 1.037(7) . ? N1 H4 1.071(8) . ? N1 H1 1.031(6) . ? C2 C3 1.525(4) . ? C2 C1 1.532(3) . ? C2 H2 1.099(7) . ? C1 O1 1.245(4) . ? C3 H7 1.093(12) . ? C3 H5 1.095(11) . ? C3 H3 1.114(11) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 N1 H6 109.5(5) . . ? C2 N1 H4 109.4(4) . . ? H6 N1 H4 107.9(6) . . ? C2 N1 H1 112.4(5) . . ? H6 N1 H1 110.0(6) . . ? H4 N1 H1 107.4(6) . . ? N1 C2 C3 110.0(2) . . ? N1 C2 C1 110.26(18) . . ? C3 C2 C1 110.9(2) . . ? N1 C2 H2 107.4(5) . . ? C3 C2 H2 110.4(4) . . ? C1 C2 H2 107.7(5) . . ? O1 C1 O2 125.9(3) . . ? O1 C1 C2 118.2(3) . . ? O2 C1 C2 115.9(2) . . ? C2 C3 H7 110.3(6) . . ? C2 C3 H5 112.0(7) . . ? H7 C3 H5 107.7(10) . . ? C2 C3 H3 110.0(5) . . ? H7 C3 H3 107.4(11) . . ? H5 C3 H3 109.2(10) . . ? _refine_diff_density_max 0.168 _refine_diff_density_min -0.148 _refine_diff_density_rms 0.033 data_dala60kinv _database_code_depnum_ccdc_archive 'CCDC 278466' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H7 N O2' _chemical_formula_weight 89.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source C C 6.646 International Tables Vol C Table 4.4.4.1 H H -3.739 International Tables Vol C Table 4.4.4.1 N N 9.360 International Tables Vol C Table 4.4.4.1 O O 5.803 International Tables Vol C Table 4.4.4.1 _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P212121 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' _cell_length_a 5.942(3) _cell_length_b 12.261(5) _cell_length_c 5.7850(3) _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _cell_volume 421.47 _cell_formula_units_Z 4 _cell_measurement_temperature 60(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 3.0 _exptl_crystal_size_mid 3.0 _exptl_crystal_size_min 2.0 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.403 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 5.87 _exptl_absorpt_coefficient_mu '2.610, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.26 _exptl_absorpt_correction_T_max 0.64 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.34 + 1.27 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.55 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 60(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 4081 _diffrn_reflns_av_R_equivalents 0.069 _diffrn_reflns_av_sigmaI/netI 0.0208 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 16 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 30 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 1968 _reflns_number_gt 1968 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.95 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment 'mixed refall' #_refine_ls_hydrogen_treatment _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.042 _refine_ls_number_reflns 1968 _refine_ls_number_parameters 119 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0799 _refine_ls_R_factor_gt 0.0799 _refine_ls_wR_factor_ref 0.2012 _refine_ls_wR_factor_gt 0.2012 _refine_ls_goodness_of_fit_ref 1.941 _refine_ls_restrained_S_all 1.941 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group H3 H 0.6945(8) -0.0046(5) 0.6949(12) 0.0295(9) Uani 1 1 d . . . H5 H 0.8706(6) -0.1054(5) 0.5687(10) 0.0273(8) Uani 1 1 d . . . C3 C 0.73843(18) -0.09060(11) 0.6960(3) 0.01016(17) Uani 1 1 d . . . H7 H 0.8050(8) -0.1101(5) 0.8673(10) 0.0280(8) Uani 1 1 d . . . O1 O 0.2728(2) -0.08393(12) 0.3744(3) 0.00942(18) Uani 1 1 d . . . H1 H 0.2937(6) -0.0581(3) 0.8040(8) 0.0213(6) Uani 1 1 d . . . O2 O 0.5580(2) -0.18441(12) 0.2386(3) 0.01012(19) Uani 1 1 d . . . C1 C 0.44528(15) -0.14090(9) 0.3995(2) 0.00686(14) Uani 1 1 d . . . C2 C 0.53305(16) -0.16124(9) 0.6455(2) 0.00709(14) Uani 1 1 d . . . N1 N 0.35203(11) -0.13750(7) 0.81662(16) 0.00802(11) Uani 1 1 d . . . H4 H 0.4157(6) -0.1497(3) 0.9840(7) 0.0196(5) Uani 1 1 d . . . H2 H 0.5751(6) -0.2482(3) 0.6605(7) 0.0201(5) Uani 1 1 d . . . H6 H 0.2202(5) -0.1917(3) 0.7913(8) 0.0201(5) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 H3 0.0303(15) 0.027(2) 0.031(3) -0.0042(16) 0.0001(16) -0.0044(14) H5 0.0213(11) 0.038(2) 0.022(2) -0.0018(14) 0.0068(12) -0.0036(12) C3 0.0099(3) 0.0133(4) 0.0072(5) -0.0001(3) -0.0005(3) -0.0018(2) H7 0.0272(13) 0.036(2) 0.020(2) 0.0021(15) -0.0085(13) -0.0033(14) O1 0.0110(3) 0.0103(4) 0.0069(6) 0.0003(3) -0.0010(3) 0.0026(3) H1 0.0228(10) 0.0187(13) 0.0224(19) 0.0022(9) 0.0039(11) 0.0052(9) O2 0.0127(3) 0.0127(5) 0.0049(5) -0.0011(3) 0.0005(3) 0.0030(3) C1 0.0088(2) 0.0063(3) 0.0055(4) 0.0001(2) -0.0005(2) 0.0002(2) C2 0.0088(2) 0.0067(3) 0.0058(5) 0.0001(2) -0.0003(2) 0.00072(19) N1 0.00936(16) 0.0092(2) 0.0055(3) -0.00015(16) 0.00026(17) 0.00051(16) H4 0.0235(10) 0.0234(15) 0.0119(13) 0.0018(8) -0.0006(9) 0.0013(9) H2 0.0248(11) 0.0173(13) 0.0184(16) 0.0004(8) 0.0000(10) 0.0043(9) H6 0.0180(8) 0.0231(14) 0.0191(17) -0.0016(9) -0.0006(9) -0.0056(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C3 C2 1.5249(15) . ? C3 H3 1.086(6) . ? C3 H5 1.092(5) . ? C3 H7 1.093(5) . ? O1 C1 1.2487(16) . ? O2 C1 1.2649(19) . ? C1 C2 1.5357(16) . ? C2 N1 1.4906(14) . ? C2 H2 1.099(4) . ? N1 H1 1.036(4) . ? N1 H4 1.050(4) . ? N1 H6 1.038(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C3 H3 111.0(3) . . ? C2 C3 H5 110.6(3) . . ? H3 C3 H5 109.3(5) . . ? C2 C3 H7 109.8(3) . . ? H3 C3 H7 107.8(5) . . ? H5 C3 H7 108.4(5) . . ? O1 C1 O2 125.77(15) . . ? O1 C1 C2 118.53(12) . . ? O2 C1 C2 115.70(11) . . ? N1 C2 C3 109.82(10) . . ? N1 C2 C1 109.79(8) . . ? C3 C2 C1 110.93(10) . . ? N1 C2 H2 107.5(2) . . ? C3 C2 H2 110.7(2) . . ? C1 C2 H2 108.0(2) . . ? C2 N1 H1 112.2(2) . . ? C2 N1 H4 109.0(2) . . ? H1 N1 H4 108.6(4) . . ? C2 N1 H6 109.0(2) . . ? H1 N1 H6 109.8(3) . . ? H4 N1 H6 108.1(3) . . ? _refine_diff_density_max 0.440 _refine_diff_density_min -0.366 _refine_diff_density_rms 0.071 data_lala60k _database_code_depnum_ccdc_archive 'CCDC 278467' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H7 N O2' _chemical_formula_weight 89.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source C C 6.646 International Tables Vol C Table 4.4.4.1 H H -3.739 International Tables Vol C Table 4.4.4.1 N N 9.360 International Tables Vol C Table 4.4.4.1 O O 5.803 International Tables Vol C Table 4.4.4.1 _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P212121 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' _cell_length_a 5.940(3) _cell_length_b 12.274(5) _cell_length_c 5.806(3) _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _cell_volume 423.30 _cell_formula_units_Z 4 _cell_measurement_temperature 60(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 5.0 _exptl_crystal_size_mid 3.0 _exptl_crystal_size_min 2.0 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.397 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 5.87 _exptl_absorpt_coefficient_mu '2.610, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.10 _exptl_absorpt_correction_T_max 0.64 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.34 + 1.27 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.55 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 60(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 5263 _diffrn_reflns_av_R_equivalents 0.059 _diffrn_reflns_av_sigmaI/netI 0.0365 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 25 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 7.64 _diffrn_reflns_theta_max 78.39 _reflns_number_total 2023 _reflns_number_gt 2023 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.088 #_diffrn_reflns_sin(theta)/lambda_max 0.95 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.470 _refine_ls_number_reflns 2023 _refine_ls_number_parameters 118 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0588 _refine_ls_R_factor_gt 0.0588 _refine_ls_wR_factor_ref 0.1499 _refine_ls_wR_factor_gt 0.1499 _refine_ls_goodness_of_fit_ref 1.315 _refine_ls_restrained_S_all 1.315 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group H2 H -0.5750(5) 0.2478(2) -0.6620(5) 0.0199(4) Uani 1 1 d . . . H6 H -0.2207(4) 0.1919(3) -0.7908(6) 0.0216(4) Uani 1 1 d . . . H4 H -0.4165(4) 0.1489(2) -0.9856(5) 0.0197(4) Uani 1 1 d . . . O2 O -0.55915(17) 0.18406(10) -0.23890(19) 0.00970(13) Uani 1 1 d . . . N1 N -0.35276(9) 0.13758(6) -0.81688(11) 0.00841(9) Uani 1 1 d . . . C2 C -0.53336(12) 0.16103(7) -0.64575(16) 0.00752(11) Uani 1 1 d . . . C1 C -0.44574(12) 0.14073(8) -0.40024(14) 0.00724(10) Uani 1 1 d . . . H7 H -0.8073(5) 0.1106(3) -0.8688(7) 0.0276(6) Uani 1 1 d . . . H5 H -0.8710(4) 0.1043(3) -0.5675(7) 0.0269(6) Uani 1 1 d . . . C3 C -0.73975(14) 0.09067(9) -0.69676(18) 0.01023(12) Uani 1 1 d . . . H1 H -0.2944(5) 0.0576(2) -0.8032(6) 0.0228(5) Uani 1 1 d . . . O1 O -0.27342(16) 0.08368(10) -0.3752(2) 0.00972(13) Uani 1 1 d . . . H3 H -0.6957(6) 0.0039(3) -0.6949(8) 0.0285(6) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 H2 0.0249(8) 0.0139(9) 0.0209(11) 0.0024(6) 0.0006(8) 0.0045(7) H6 0.0164(6) 0.0256(13) 0.0228(12) -0.0021(8) 0.0006(7) -0.0052(7) H4 0.0214(7) 0.0244(12) 0.0134(9) 0.0001(6) -0.0007(6) 0.0011(7) O2 0.0110(2) 0.0120(4) 0.0061(3) -0.0005(2) 0.0005(2) 0.0022(2) N1 0.00880(13) 0.0096(2) 0.0068(2) 0.00008(13) 0.00041(12) 0.00037(14) C2 0.00819(17) 0.0077(3) 0.0066(3) 0.00008(16) -0.00034(16) 0.00054(17) C1 0.00850(16) 0.0072(3) 0.0060(3) -0.00022(15) -0.00035(15) 0.00038(19) H7 0.0265(10) 0.0366(18) 0.0197(15) 0.0017(10) -0.0090(9) -0.0046(10) H5 0.0187(7) 0.0348(18) 0.0273(16) -0.0041(10) 0.0064(8) -0.0023(9) C3 0.00933(19) 0.0127(4) 0.0087(3) -0.00033(19) -0.00091(19) -0.0019(2) H1 0.0226(8) 0.0186(12) 0.0272(15) 0.0013(8) 0.0037(8) 0.0050(8) O1 0.0102(2) 0.0107(4) 0.0083(4) 0.0011(2) -0.0011(2) 0.0027(2) H3 0.0319(12) 0.0161(13) 0.0375(19) 0.0009(10) -0.0035(13) -0.0015(10) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O2 C1 1.2704(13) . ? N1 C2 1.4903(11) . ? N1 H6 1.040(3) . ? N1 H4 1.059(3) . ? N1 H1 1.045(3) . ? C2 C3 1.5285(12) . ? C2 C1 1.5378(12) . ? C2 H2 1.097(3) . ? C1 O1 1.2486(13) . ? C3 H7 1.104(4) . ? C3 H5 1.095(3) . ? C3 H3 1.097(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 N1 H6 108.79(18) . . ? C2 N1 H4 109.50(15) . . ? H6 N1 H4 108.6(2) . . ? C2 N1 H1 111.72(18) . . ? H6 N1 H1 109.9(3) . . ? H4 N1 H1 108.2(3) . . ? N1 C2 C3 109.82(7) . . ? N1 C2 C1 110.06(6) . . ? C3 C2 C1 111.07(8) . . ? N1 C2 H2 107.00(16) . . ? C3 C2 H2 110.52(17) . . ? C1 C2 H2 108.27(17) . . ? O1 C1 O2 125.70(10) . . ? O1 C1 C2 118.44(9) . . ? O2 C1 C2 115.86(8) . . ? C2 C3 H7 110.0(2) . . ? C2 C3 H5 110.6(2) . . ? H7 C3 H5 109.1(3) . . ? C2 C3 H3 110.82(19) . . ? H7 C3 H3 108.1(3) . . ? H5 C3 H3 108.1(3) . . ? _refine_diff_density_max 0.463 _refine_diff_density_min -0.246 _refine_diff_density_rms 0.050