Computational Study on reactivity of cyclic organometallic dienes containing silicon, germanium and tin

Davor Margetić and Mirjana Eckert-Maksić

Laboratory for Physical Organic Chemistry, Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, Zagreb.

Croatia
Table S1. Total energies of reactants obtained by B3LYP/LANL2DZ (a.u.)

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>R=H</th>
<th></th>
<th>M</th>
<th>R=H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-194.07159</td>
<td>9</td>
<td>C</td>
<td>-233.38217</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-159.84304</td>
<td>10</td>
<td>Si</td>
<td>-164.93178</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-159.72211</td>
<td>11</td>
<td>SiGe</td>
<td>-164.81509</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-159.31171</td>
<td>12</td>
<td>Ge</td>
<td>-164.69876</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R=CH₃</td>
<td></td>
<td></td>
<td>R=CH₃</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-272.68522</td>
<td>13</td>
<td>C</td>
<td>-390.60631</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-238.49574</td>
<td>14</td>
<td>Si</td>
<td>-322.22849</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-238.37146</td>
<td>15</td>
<td>SiGe</td>
<td>-322.10858</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-237.96086</td>
<td>16</td>
<td>Ge</td>
<td>-321.98912</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>-307.318396</td>
</tr>
</tbody>
</table>

Supplementary Material (ESI) for New Journal of Chemistry
This journal is (c) The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2006
Table S2. Total energies of transition state structures obtained by B3LYP/LANL2DZ (a.u.)

<table>
<thead>
<tr>
<th>TS</th>
<th>M</th>
<th>R</th>
<th>M</th>
<th>E (a.u.)</th>
<th>L</th>
<th>E (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>H</td>
<td>-501.357423</td>
<td>-501.358543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td></td>
<td>-467.123108</td>
<td>-467.128282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td></td>
<td>-467.001281</td>
<td>-467.007756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td></td>
<td>-466.593379</td>
<td>-466.596111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>CH₃</td>
<td>-579.948321</td>
<td>-579.963009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td></td>
<td>-545.767487</td>
<td>-545.778962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td></td>
<td>-545.645691</td>
<td>-545.654342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td></td>
<td>-545.238981</td>
<td>-545.243176</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S3. B3LYP/LANL2DZ total energies of products (in a.u.)

<table>
<thead>
<tr>
<th>Product</th>
<th>Exo,exo-</th>
<th>Exo,endo-</th>
<th>ΔΔE</th>
<th>Product</th>
<th>Exo,exo-</th>
<th>Exo,endo-</th>
<th>ΔΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R=H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>-501.43989</td>
<td>-501.43377</td>
<td>16.1</td>
<td>9</td>
<td>C</td>
<td>-540.76359</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-467.21245</td>
<td>-467.20798</td>
<td>11.8</td>
<td>10</td>
<td>Si</td>
<td>-472.31716</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-467.09545</td>
<td>-467.09039</td>
<td>13.3</td>
<td>11</td>
<td>Si Ge</td>
<td>-472.20251</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-466.69184</td>
<td>-466.68199</td>
<td>25.9</td>
<td>12</td>
<td>Ge</td>
<td>-472.08799</td>
</tr>
<tr>
<td>R=CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-580.04993</td>
<td>-580.04232</td>
<td>32.5</td>
<td>13</td>
<td>C</td>
<td>-697.97353</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-545.85841</td>
<td>-545.85653</td>
<td>2.9</td>
<td>14</td>
<td>Si</td>
<td>-629.60994</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-545.73936</td>
<td>-545.73843</td>
<td>2.4</td>
<td>15</td>
<td>Si Ge</td>
<td>-629.49237</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-545.33764</td>
<td>-545.33019</td>
<td>19.6</td>
<td>16</td>
<td>Ge</td>
<td>-629.37539</td>
</tr>
</tbody>
</table>
Table S4. Total energies of reactants obtained by B3LYP/LANL2DZ* // B3LYP/LANL2DZ (a.u.)

<table>
<thead>
<tr>
<th>M</th>
<th>R=H</th>
<th>R=CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C -194.12427</td>
<td>C -272.76089</td>
</tr>
<tr>
<td>2</td>
<td>Si -159.91135</td>
<td>Si -238.57861</td>
</tr>
<tr>
<td>3</td>
<td>Ge -159.77634</td>
<td>Ge -238.43831</td>
</tr>
<tr>
<td>4</td>
<td>Sn -159.35969</td>
<td>Sn -238.01917</td>
</tr>
<tr>
<td>5</td>
<td>C -233.445586</td>
<td>C -233.445367</td>
</tr>
<tr>
<td>6</td>
<td>Si -165.02132</td>
<td>Si -165.02104</td>
</tr>
<tr>
<td>7</td>
<td>SiGe -164.764495</td>
<td>SiGe -164.76431</td>
</tr>
<tr>
<td>8</td>
<td>Ge -164.892518</td>
<td>Ge -164.89225</td>
</tr>
</tbody>
</table>

-307.39839
Table S5. Total energies of transition state structures obtained by B3LYP/LANL2DZ*//B3LYP/LANL2DZ (a.u.)

<table>
<thead>
<tr>
<th>TS</th>
<th>M</th>
<th>R=H</th>
<th></th>
<th>TS</th>
<th>M, L</th>
<th>R=H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-501.50347</td>
<td>-501.50543</td>
<td>9</td>
<td>C</td>
<td>-540.81767</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-467.28650</td>
<td>-467.29371</td>
<td>10</td>
<td>Si</td>
<td>-472.39615</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-467.15087</td>
<td>-467.15731</td>
<td>11</td>
<td>Si Ge</td>
<td>-472.26706</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-466.73275</td>
<td>-466.73819</td>
<td>12</td>
<td>Ge</td>
<td>-472.13923</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-580.11923</td>
<td>-580.13319</td>
<td>13</td>
<td>C</td>
<td>-698.06450</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-545.94572</td>
<td>-545.95765</td>
<td>14</td>
<td>Si</td>
<td>-629.71801</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-545.80664</td>
<td>-545.81696</td>
<td>15</td>
<td>Si Ge</td>
<td>-629.45239</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-545.38999</td>
<td>-545.39678</td>
<td>16</td>
<td>Ge</td>
<td>-629.58447</td>
</tr>
</tbody>
</table>
Table S6. Total energies of reactants obtained by B3LYP/LANL2DZ* (a.u.)

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>R=H</th>
<th></th>
<th>M</th>
<th>R=H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-194.12427</td>
<td>9</td>
<td>C</td>
<td>-233.44559</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-159.91135</td>
<td>10</td>
<td>Si</td>
<td>-165.02132</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-159.77634</td>
<td>11</td>
<td>SiGe</td>
<td>-164.89252</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-159.35969</td>
<td>12</td>
<td>Ge</td>
<td>-164.764495</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>R=CH₃</th>
<th></th>
<th>M</th>
<th>R=CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C</td>
<td>-272.76126</td>
<td>13</td>
<td>C</td>
<td>-390.71506</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-238.57926</td>
<td>14</td>
<td>Si</td>
<td>-322.35076</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-238.43858</td>
<td>15</td>
<td>SiGe</td>
<td>-322.21682</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-238.01952</td>
<td>16</td>
<td>Ge</td>
<td>-322.08378</td>
</tr>
</tbody>
</table>

-307.400098
Table S7. Total energies of transition state structures obtained by B3LYP/LANL2DZ* (a.u.)

<table>
<thead>
<tr>
<th>TS</th>
<th>M</th>
<th>R=H</th>
<th>L</th>
<th>R=CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-501.50726</td>
<td>-501.51015</td>
<td>-580.12279</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-467.29035</td>
<td>-467.29754</td>
<td>-545.94981</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-467.15429</td>
<td>-467.16042</td>
<td>-545.81091</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-466.73714</td>
<td>-466.74195</td>
<td>-545.39429</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-540.82549</td>
<td></td>
<td>-698.08006</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-472.40249</td>
<td></td>
<td>-629.72307</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-472.27431</td>
<td></td>
<td>-629.58953</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-472.14435</td>
<td></td>
<td>-629.45749</td>
</tr>
</tbody>
</table>

Note: The table contains the energies of transition states (TS) for different pairs of atoms (M, L) and substituents (R) obtained by density functional theory (DFT) calculations using the B3LYP/LANL2DZ basis set. The energies are given in atomic units (a.u.).*
Table S8. AM1 activation energies in kJmol$^{-1}$

<table>
<thead>
<tr>
<th>TS</th>
<th>M</th>
<th>exo,exo-</th>
<th>$exo,endo$-</th>
<th>TS</th>
<th>exo,exo-</th>
<th>$exo,endo$-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>138.7</td>
<td>134.6</td>
<td>9</td>
<td>M=L=C</td>
<td>143.5</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>179.0</td>
<td>149.3</td>
<td>10</td>
<td>M=L=Si</td>
<td>186.3</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>140.9</td>
<td>135.4</td>
<td>11</td>
<td>M=Si,L=Ge</td>
<td>166.1</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>174.7</td>
<td>157.5</td>
<td>12</td>
<td>M=L=Ge</td>
<td>146.6</td>
</tr>
</tbody>
</table>
Table S9. B3LYP/LANL2DZ reactions' energies ΔH_{rxn} (in kJmol$^{-1}$)

<table>
<thead>
<tr>
<th>TS</th>
<th>M</th>
<th>$\Delta H_{\text{exo,exo}}$</th>
<th>$\Delta H_{\text{exo,endo}}$</th>
<th>TS</th>
<th>M, L</th>
<th>$\Delta H_{\text{exo,exo}}$</th>
<th>$\Delta H_{\text{exo,endo}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-131.0</td>
<td>-114.9</td>
<td>9</td>
<td>C</td>
<td>-165.5</td>
<td>-158.1</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-133.9</td>
<td>-122.1</td>
<td>10</td>
<td>Si</td>
<td>-175.9</td>
<td>-167.8</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-144.3</td>
<td>-131.0</td>
<td>11</td>
<td>Si Ge</td>
<td>-181.2</td>
<td>-172.8</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-136.2</td>
<td>-110.3</td>
<td>12</td>
<td>Ge</td>
<td>-185.9</td>
<td>-177.9</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-121.6</td>
<td>-89.1</td>
<td>13</td>
<td>C</td>
<td>-128.2</td>
<td>-105.3</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-116.2</td>
<td>-113.3</td>
<td>14</td>
<td>Si</td>
<td>-165.5</td>
<td>-161.5</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-129.9</td>
<td>-127.5</td>
<td>15</td>
<td>Si Ge</td>
<td>-171.9</td>
<td>-166.6</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-153.3</td>
<td>-133.7</td>
<td>16</td>
<td>Ge</td>
<td>-178.2</td>
<td>-168.3</td>
</tr>
</tbody>
</table>
Table S10. B3LYP/LANL2DZ FMO orbital energies in eV

<table>
<thead>
<tr>
<th>M</th>
<th>HOMO</th>
<th>LUMO</th>
<th>HOMO</th>
<th>LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=H</td>
<td></td>
<td>R=CH3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>-5.91</td>
<td>9</td>
<td>M=L=C</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>-6.35</td>
<td>10</td>
<td>M=L=Si</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td>-6.36</td>
<td>11</td>
<td>M=Si,L=Ge</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td>-6.35</td>
<td>12</td>
<td>M=L=Ge</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-5.83</td>
<td>13</td>
<td>M=L=C</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>-6.09</td>
<td>14</td>
<td>M=L=Si</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>-6.09</td>
<td>15</td>
<td>M=Si,L=Ge</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td>-6.08</td>
<td>16</td>
<td>M=L=Ge</td>
</tr>
</tbody>
</table>

I=HOMO(Diene)−LUMO(alkene); II=HOMO(alkene)−LUMO(Diene)

7oxaNBD: HOMO=−6.19, LUMO=−0.95 eV
Table S11. B3LYP/LANL2DZ quantum of charge transfer from diene to dienophile\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>(R=H)</th>
<th>(R=CH_3)</th>
<th>(R=H)</th>
<th>(R=CH_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>M, L</td>
<td>exo,exo-</td>
<td>exo,endo-</td>
<td>exo,exo-</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>-0.071</td>
<td>-0.067</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>0.017</td>
<td>0.128</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ge</td>
<td>0.005</td>
<td>0.009</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sn</td>
<td>0.030</td>
<td>0.002</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>C, M</td>
<td>-0.072</td>
<td>-0.071</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>0.009</td>
<td>0.007</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Ge</td>
<td>0.007</td>
<td>0.007</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sn</td>
<td>0.018</td>
<td>0.028</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

\(^a\)Negative numbers = electron transfer from diene to dienophile (normal el. demand)
Table S12. Comparison of the length of the forming bond lengths (in Å) in TS1-16 calculated with the B3LYP/LANL2DZ and AM1 methods.

<table>
<thead>
<tr>
<th></th>
<th>R=H</th>
<th></th>
<th>R=H</th>
<th></th>
<th>R=CH₃</th>
<th></th>
<th>R=CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>M</td>
<td></td>
<td>TS</td>
<td>M,L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exo,exo-</td>
<td>exo,endo-</td>
<td></td>
<td>exo,exo-</td>
<td>exo,endo-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3LYP</td>
<td>AM1</td>
<td></td>
<td>B3LYP</td>
<td>AM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3LYP</td>
<td>AM1</td>
<td></td>
<td>B3LYP</td>
<td>AM1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td></td>
<td>2.310; 2.347</td>
<td>2.155; 2.155</td>
<td>2.296; 2.298</td>
<td>2.141; 2.142</td>
<td>2.360; 2.361</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td></td>
<td>2.353; 2.356</td>
<td>2.155; 2.156</td>
<td>2.324; 2.325</td>
<td>2.131; 2.135</td>
<td>2.385; 2.392</td>
</tr>
<tr>
<td>3</td>
<td>Ge</td>
<td></td>
<td>2.301; 2.414</td>
<td>2.161; 2.163</td>
<td>2.323; 2.332</td>
<td>2.143; 2.146</td>
<td>2.377; 2.398</td>
</tr>
<tr>
<td>4</td>
<td>Sn</td>
<td></td>
<td>2.371; 2.402</td>
<td>2.167; 2.168</td>
<td>2.324; 2.327</td>
<td>2.153; 2.155</td>
<td>2.385; 2.400</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td></td>
<td>2.326; 2.337</td>
<td>2.165; 2.170</td>
<td>2.325; 2.339</td>
<td>2.151; 2.155</td>
<td>2.336; 2.409</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td></td>
<td>2.326; 2.405</td>
<td>2.123; 2.140</td>
<td>2.133; 2.333</td>
<td>2.133; 2.146</td>
<td>2.401; 2.402</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td></td>
<td>2.361; 2.378</td>
<td>2.161; 2.163</td>
<td>2.339; 2.342</td>
<td>2.143; 2.144</td>
<td>2.300; 2.463</td>
</tr>
<tr>
<td>8</td>
<td>Sn</td>
<td></td>
<td>2.370; 2.400</td>
<td>2.167; 2.176</td>
<td>2.334; 2.348</td>
<td>2.158; 2.159</td>
<td>2.403; 2.403</td>
</tr>
</tbody>
</table>