Supporting Information

Crystal structure and near-infrared luminescence properties of novel binuclear erbium and erbium-ytterbium cocrystalline complexes

Limei Song, Qi Wang, Daihua Tang, Xinhou Liu and Zhen Zhen

aTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China

bThe Graduate university of Chinese Academy of Sciences, Beijing, China.

Figure S1 X-ray energy dispersive spectrum from the complex Er\textsubscript{1.4}Yb\textsubscript{0.6}(Ba\textsubscript{6}(Phen\textsubscript{2}.)

Table S1 EDS analysis results for the complex Er\textsubscript{1.4}Yb\textsubscript{0.6}(Ba\textsubscript{6}(Phen\textsubscript{2}.)

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>17.16</td>
<td>62.47</td>
</tr>
<tr>
<td>O K</td>
<td>6.50</td>
<td>17.77</td>
</tr>
<tr>
<td>Er M</td>
<td>53.47</td>
<td>13.98</td>
</tr>
<tr>
<td>Yb M</td>
<td>22.86</td>
<td>5.78</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Spectrum processing: No peaks omitted; Processing option: All elements analyzed (Normalised); Number of iterations = 1.
Figure S2 Calculated isotope patterns of \([\text{Ln}_2(\text{Ba})_3(\text{Phen})_2]^+\). (a) is calculated isotope patterns of \([\text{Er}_2(\text{Ba})_3(\text{Phen})_2]^+\); (b) is calculated isotope patterns of \([\text{Yb}_2(\text{Ba})_3(\text{Phen})_2]^+\); (c) is calculated isotope patterns of \([\text{ErYb}(\text{Ba})_3(\text{Phen})_2]^+\).

Figure S3 NIR PL spectra of bulk microcrystalline powders of complexes \(\text{Er}_{2-x}\text{Yb}_x(\text{Ba})_6(\text{Phen})_2\) (\(x=0, 0.6, 1.0, 1.4, 2.0\)) around 1535 nm excited at 320 nm at room temperature.
Figure S4 Schematic drawing for the sensitization process of Er$^{3+}$ and Yb$^{3+}$.