Non-ionic Metal-Chelating Surfactants Mediated Solvent-Free Thermo-induced Separation of Uranyl

Chantal Larpent,* Sylvain Prévost, Laurence Berthon, Thomas Zemb and Fabienne Testard

Correspondence to C. Larpent ; E-mail: larpent@chimie.uvsq.fr

Supplementary Information

Contents

I- Synthesis of Surfactant 1

II- NMR spectra

- Figure S1 : ¹H NMR spectra of $\underline{2}$ in CDCl₃ in the absence and in the presence of UO₂(NO₃)₂

- Figure S2 : ¹H NMR spectra <u>2</u> in D₂O + LiNO₃ (4M) in the absence and in the presence of $UO_2(NO_3)_2$ (40mM) [U/<u>2</u>=0.5]

III- ESI-MS spectra of mixtures of MCTSs and uranyl nitrate in water

- Figure S.3 : ESI-MS spectrum of $\underline{2}$ + UO₂(NO₃)₂ (U/ $\underline{2}$ = 0.5) in water

- Figure S.4 : ESI-MS spectrum of $\underline{1} + UO_2(NO_3)_2$ (U/ $\underline{1} = 0.5$) in water

IV- ESI-MS spectrum of a coacervate

Synthesis of Surfactant 1

Synthesis of intermediate acid (*A*) : A solution of dodecyloxypentaethylene glycol $C_{12}E_5$ (4.00 g, 9.9 mmol, high purity monodisperse obtained from Nikko) in 10 mL anhydrous THF was added under N₂ upon stirring to a suspension of NaH (60% in mineral oil, 1.38 g, 34.5 mmol) in 10 mL anhydrous THF. After 30 min, a solution of bromoacetic acid (2.07 g, 14.8 mmol) in 7 mL anhydrous THF was added dropwise over 0.5 h. After stirring for 12 hours at 60°C, the reaction mixture was quenched with 1N HCl and THF was removed under vacuum. The aqueous phase was extracted with Et₂O and the organic phase was washed with 1N HCl, brine and then dried over MgSO₄. A was isolated after removal of the solvent (4.10 g, 90%) as a yellow oil and used without further purification for the following step. Rf (AcOEt/MeOH 4:1) = 0.2. ¹H NMR (CDCl₃) : δ (ppm) = 4.13 (s, 2H, OCH₂CO); 3.66-3.52 (m, 20H, OCH₂CH₂O); 3.42 (t, J=6.7Hz, 2H, CH₂CH₂O); 1.50 (m, 2H, CH₂CH₂O); 1.19 (s, 18H, CH₂); 0.85 (t, J=6.7Hz, 3H, CH₃); ¹³C NMR (CDCl₃): δ (ppm) = 172.10 (*C*=O); 71.32 (CH₂CH₂O); 70.36, 70.32, 70.29, 70.27, 70.20, 69.82, 69.79 (OCH₂CH₂O, OCH₂CO); 31.70, 29.45, 29.42, 29.39, 29.27, 29.12, 25.86, 22.46 (CH₂); 14.02 (CH₃). IR v(cm⁻¹) : 3473 (OH), 2919, 2848 (C-H), 1752 (C=O), 1117 (C-O).

Synthesis of MCTS <u>1</u>: 1-hydroxybenzotriazole HOBt (1.25 g, 9.2 mmol) and Ac-Lys-OMe (0.60 g, 3.2 mmol) were added under N₂ to a solution of acid **A** (1.22 g, 2.6 mmol) in 100 mL dry DMF. After stirring for 15 min, EDC (1.26 g, 6.6 mmol) was added and the reaction mixture was allowed to stir for 12 hours at room temperature. After evaporation of DMF, the residue was solubilized in CH₂Cl₂ and the organic phase was washed with 1N HCl, brine and dried over MgSO₄. The crude product isolated after removal of the solvent (1.56 g) was purified by column chromatography on silica gel with AcOEt/MeOH (6:1) as eluent to provide <u>1</u> (1.20 g, 70%) as a yellow oil. Rf (AcOEt/MeOH 1:1) = 0.7. $[\alpha]_D$ +7°, $[\alpha]_{546}$ +8°, $[\alpha]_{436}$ +12°, $[\alpha]_{365}$ +20° (c = 1.0, CHCl₃). ¹H NMR (CDCl₃): δ (ppm) = 7.14 (t, J=6.6Hz, 1H, NH_ε); 6.38 (d, J=7.9Hz, 1H, NH_α); 4.54 (dt, J=7.9Hz, J=4.9Hz, 1H, CH Lys); 3.97 (s, 2H, OCH₂CO); 3.73 (s, 3H, CO₂CH₃); 3.66-3.55 (m, 20H, OCH₂CH₂O); 3.44 (t, J=6.9Hz, 2H, CH₂CH₂O); 3.28 (m, 2H, NCH₂); 2.02 (s, 3H, CH₃CO); 1.84-1.23 (m, 26H, CH₂); 0.87 (t, J=6.5Hz, 3H, CH₂CH₃).

¹³C NMR (CDCl₃): δ (ppm) = 172.95, 170.13, 170.00 (*C*=O); 71.55 (CH₂CH₂O); 70.99, 70.61, 70.56, 70.54, 70.52, 70.40, 70.18, 70.02 (OCH₂CH₂O, OCH₂CO); 52.28, 52.08 (CH Lys, CO₂CH₃); 38.00 (NCH₂); 31.89, 31.52, 29.64, 29.61, 29.59, 29.48, 29.32, 29.19, 26.08, 22.66, 22.30 (CH₂); 22.91 (CH₃CO); 14.06 (CH₂CH₃). IR v(cm⁻¹) : 3303 (NH), 2919, 2853 (C-H), 1737 (C=O ester), 1650 (C=O amide), 1112 (C-O-C). SM (ESI, H₂O/MeCN), m/z: 649.5 (MH⁺, 100%); 671 (MNa⁺, 43%); 687.5 (MK⁺, 66%). Anal. Calcd. for C₃₃H₆₄O₁₀N₂,1.25 H₂O: C, 59.04; H, 9.98; N, 4.17; Found: C, 58.94; H, 9.82; N, 4.72.

II- NMR Spectra

Figure S.1

¹H NMR spectra (500MHz) of $\underline{2}$ (67mM) in CDCl₃ in the absence (bottom, dark) and in the presence of UO₂(NO₃)₂ [U/ $\underline{2}$ = 1.5] (top, red)

Figure S.2

¹H NMR spectra (500MHz) of <u>2</u> (80mM) in D_2O + LiNO₃ (4M) in the absence (bottom, green) and in the presence of $UO_2(NO_3)_2$ (40mM) [U/<u>2</u>=0.5] (top, red)

III- ESI-MS spectra of mixtures of MCTSs and uranyle nitrate in water

Figure S.3

2 (50mM), UO₂(NO₃)₂ (25mM), HNO₃ (15mM) in water.

The solution was allowed to stand at RT for 4h and diluted in methanol just before injection

Peak	m/z	Assignement*	%
а	511.3	LUO ₂ ²⁺	100
b	753.5	LH⁺	13
С	775.5	LNa⁺	14
d	888	$L_2 U O_2^{2+}$	10

* : L= <u>2</u>

Figure S.4

ESI-MS spectrum of $\underline{1} + UO_2(NO_3)_2$ (U/ $\underline{1} = 0.5$) in water

1 (50mM), UO₂(NO₃)₂ (25mM), HNO₃ (15mM) in water.

The solution was allowed to stand at RT for 4h and diluted in methanol just before injection

Peak	m/z	Assignement*	%
а	459.5	LUO ₂ ²⁺	100
b	649.4	LH⁺	<5%
С	671.8	LNa ⁺	33
d	783.6	$L_2 U O_2^{2+}$	23

* : L= <u>1</u>

IV- ESI-MS spectrum of a coacervate resulting from CPE with 1

Figure S.5

ESI-MS spectrum of the coacervate resulting from CPE with <u>1</u> (entry 6, Table) Mol. U-per-mol. surfactant in the coacervate (R_{Uc}) = 0.28

Experimental conditions: $[\underline{1}] = 0.04M$, $[UO_2(NO_3)_2] = 0.02M$ (R_{Ui} = 0.5), $[LiNO_3]=4M$, $[HNO_3]=0.01M$, separation performed at 33 °C (CP+10 °C).

The relative abundances of ions corresponding to 1/1, 1/2 and 1/3 complexes are about 100%, 90% and 27% respectively.

In the starting aqueous solution ($R_{Ui} = 0.5$) the relative abundances of ions corresponding to 1/1 and 1/2 complexes are 100% and 23%, respectively (figure S.4). 1/3 complexes were not detected.