Au(III)-Catalyzed Ring opening Reaction of 1-Cyclopropyl-2-yn-1-ols with Nucleophiles: Highly Efficient Approach to (Z)-conjugated Enynes

Hui-quan Xiao, a, c Xing-zhong Shu, a Ke-gong Ji, a Chen-ze Qi, c Yong-min Liang a, b, *

a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
c Institute of Applied Chemistry, Shaoxing College of Arts and Sciences, Shaoxing 312000, P. R. China
* Corresponding author. Phone: (+86)-931-8912593; Fax: (+86)-931-8912582; E-mail: liangym@lzu.edu.cn

Table of Contents

1. General Remarks S2
2. Typical procedure A for the preparation of 1-cyclopropyl-2-propyn-1-ols 1a-1g, 1k S2
3. Characterization data of compounds 1a-1g, 1k S3-S6
4. Typical procedure B for the preparation of 1-cyclopropyl-2-propyn-1-ols 1h-j, 1l-m S6
5. Characterization data of compounds 1h-j, 1l-m S7-S9
6. General experimental procedure for the preparation of (Z)-conjugated enynes 2aa-2ah, 2ba-2ma S9
7. Characterization data of compounds 2aa-2ah, 2ba-2ma S9-S14
8. General Remarks S15-S20
9. Characterization data of compounds 2aa-2ai, 2ba-2ma and 2lb S21-S62
10. NOE spectrum of Compound 2fa S63
General Remarks:

Column chromatography was carried out on silica gel. 1H NMR spectra were recorded on 300 MHz in CDCl$_3$ and 13C NMR spectra were recorded on 75 and 100 MHz in CDCl$_3$. IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm$^{-1}$. Melting points were determined on a microscopic apparatus and were uncorrected. All compounds were further characterized by element analysis; copies of their 1H NMR and 13C NMR spectra are provided. Room temperature is 23-25 °C. Commercially available reagents and solvents were used without further purification. THF was distilled immediately before use from Na/benzophenone.

Cyclopropyl ketones are prepared according to the literature.1

Reference:

Typical procedure A for the preparation of 1-cyclopropyl-2-propyn-1-ols 1a-1g, 1k:

To a stirring solution of appropriate terminal alkyne (1.2 equiv) in THF (1.0 M) was added ethylmagnesium bromide (1.0 M in THF, 1.1 equiv) at room temperature. The resulting solution was stirred for 1 h at 50 °C. Then corresponding ketones (1.0 equiv) in THF (0.35 M) was added slowly by syringe to the resulting solution at room temperature and stirred for 3 h. The reaction mixture was quenched by addition of saturated aqueous ammonium chloride (40 mL) and extracted with ethyl ether (2×40 mL). The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by
chromatography on silica gel to obtain the pure 1-cyclopropyl-2-propyn-1-ol as a mixture of diastereoisomers (petroleum ether–ethyl acetate, 20:1)

![Compound 1a](image1)

Compound 1a (cis and trans) was prepared according to the procedure A in 89% yield as an oil. 1a (cis): oil, 1H NMR (300 MHz; DCl$_3$): δ 0.98-1.04 (m, 1 H), 1.35-1.42 (m, 1 H), 1.71-1.77 (m, 1 H), 2.40-2.45 (m, 1 H), 2.67 (s, 1 H), 7.06-7.47 (m, 11 H), 7.72-7.74 (m, 2 H); 13C NMR (75 MHz, DCl$_3$): δ13.4, 20.7, 34.8, 74.0, 74.3, 86.4, 89.1, 122.2, 125.4, 125.7, 126.2, 127.8, 128.2, 128.3, 128.6, 131.7, 141.9, 144.4. Anal. Calcd for C$_{24}$H$_{20}$O: C, 88.85; H, 6.21; Found: C, 88.78; H, 6.30.

1a (trans): oil, 1H NMR (400 MHz; DCl$_3$): δ 1.02-1.07 (m, 1 H), 1.48-1.53 (m, 1 H), 1.71-1.75 (m, 1 H), 2.28-2.33 (m, 1 H), 2.62 (s, 1 H), 7.02-7.47 (m, 11 H), 7.73-7.75 (m, 2 H); 13C NMR (100 MHz, DCl$_3$): δ12.1, 21.4, 34.1, 74.1, 86.4, 89.3, 122.3, 125.4, 125.7, 126.4, 127.8, 128.3, 128.6, 131.8, 141.7, 144.4. Anal. Calcd for C$_{24}$H$_{20}$O: C, 88.85; H, 6.21; Found: C, 88.78; H, 6.30.

![Compound 1b](image2)

Compound 1b (1:1 mixture of diastereoisomers) was prepared according to the procedure A in 92% yield as an oil: 1H NMR (300 MHz; DCl$_3$) (1:1 mixture of diastereoisomers): δ 0.95-0.96 (m, 1 H), [1.32-1.33 (m), 1.43-1.45 (m), 1 H], 1.62-1.68 (m, 1 H), [2.24-2.26 (m), 2.38-2.40 (m), 1 H], 2.86 (s, 1 H), 3.68 (s, 3 H), 6.71-6.77 (m, 3 H), 6.91-7.01 (m, 2 H), 7.28-7.46 (m, 8 H), 7.72-7.74 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (1:1 mixture of diastereoisomers): δ 11.6, 12.9, 19.9, 20.5, 33.8, 34.4, 55.1, 74.0, 74.3, 86.3, 89.3, 113.6, 113.7, 122.2, 125.3, 127.3, 127.5, 127.7, 128.2, 128.2, 128.5, 131.7, 133.6, 133.9, 144.5, 144.5, 157.6; IR (neat): 3540, 3443, 2226, 1610, 1514, 1490, 1447 cm$^{-1}$. Anal. Calcd for C$_{25}$H$_{22}$O$_2$: C, 84.72; H, 6.26. Found: C, 84.75; H, 6.29.
Compound 1c (2:1 mixture of diastereoisomers) was prepared according to the procedure A in 93% yield as an oil: 1H NMR (300 MHz; DCl$_3$) (2:1 mixture of diastereoisomers): δ 0.96-1.02 (m, 1 H), [1.37-1.41(m), 1.50-1.55(m), 1 H], 1.65-1.74 (m, 1 H), [2.23-2.28 (m), 2.41-2.44 (m), 1 H], [2.64(s), 2.65(s), 1 H], 6.92-7.17 (m, 4 H), 7.20-7.49 (m, 8 H), 7.71-7.74 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (2:1 mixture of diastereoisomers): δ 12.2, 13.5, 20.2, 20.7, 34.4, 34.9, 73.8, 74.2, 86.5, 86.6, 88.9, 89.0, 122.1, 125.3, 127.5, 127.8, 127.9, 128.1, 128.4, 128.5, 128.7, 133.6, 131.3, 131.8, 140.2, 140.5, 144.3; Anal.Calcd for C$_{24}$H$_{19}$O: C, 80.33; H, 5.34. Found: C, 80.43; H, 5.25.

Compound 1d (2:1 mixture of diastereoisomers) was prepared according to the procedure A in 86% yield as an oil: 1H NMR (300 MHz; DCl$_3$) (2:1 mixture of diastereoisomers): δ 1.05-1.11 (m, 1 H), [1.27-1.32(m), 1.38-1.45(m), 1 H], 1.83-1.90 (m, 1 H), [2.27-2.34 (m), 2.45-2.51 (m), 1 H], [2.69(s), 2.80(s), 1 H], 5.91-5.98 (m, 1 H), 6.19-6.24 (m, 1 H), 7.18-7.47 (m, 8 H), 7.72-7.75 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (2:1 mixture of diastereoisomers): δ 10.6, 11.5, 14.2, 14.8, 31.8, 32.3, 73.5, 74.0, 86.4, 86.3, 88.6, 89.0, 104.0, 110.2, 110.3, 122.0, 125.4, 127.8, 128.2, 128.6, 131.7, 140.6, 144.1, 155.3, 155.4; IR (neat): 3543, 3431, 2227, 1598, 1490, 1447cm$^{-1}$. Anal.Calcd for C$_{22}$H$_{18}$O$_2$: C, 84.05; H, 5.77. Found: C, 84.00; H, 5.69.

Compound 1e (1:1 mixture of diastereoisomers) was prepared according to the procedure A in 91% yield as an oil: 1H NMR (300 MHz; DCl$_3$) (1:1 mixture of
diastereoisomers): δ 0.95-1.06 (m, 1 H), [1.35-1.40(m), 1.46-1.50(m), 1 H], 1.59-1.69 (m, 1 H), [2.27-2.29 (m), 2.41-2.43 (m), 1 H], [2.77(s), 2.79(s), 1 H], 6.93-7.60 (m, 14 H); 13C NMR (75 MHz, DCl₃) (1:1 mixture of diastereoisomers): δ 12.0, 13.4, 20.7, 21.4, 34.08, 34.7, 73.73, 73.9, 86.7, 88.6, 121.8, 121.9, 125.8, 126.1, 126.3, 127.2, 127.5, 128.2, 128.3, 138.8, 131.0, 131.3, 131.8, 141.3, 141.6, 143.5; IR (neat): 3549, 3418, 2227, 1601, 1487, 1487cm⁻¹. Anal.Calcd for CₙHₙBrO: C, 71.47; H, 4.75. Found: C, 71.53; H, 4.68.

Compound 1f (1:1 mixture of diastereoisomers) was prepared according to the procedure A in 89% yield as solid: mp, 38-39°C, 1H NMR (300 MHz; DCl₃) (1:1 mixture of diastereoisomers): δ 0.99-1.05 (m, 1 H), [1.32-1.39(m), 1.45-1.52(m), 1 H], 1.69-1.79 (m, 1 H), [2.23-2.29 (m), 2.39-2.45 (m), 1 H], 2.82(s, 1 H), 3.73 (s, 3 H), 6.83-6.90 (m, 2 H), 7.01-7.28 (m, 8 H), 7.42-7.47 (m, 2 H), 7.65-7.67 (m, 2 H); 13C NMR (75 MHz, DCl₃) (1:1 mixture of diastereoisomers): δ 12.2, 13.3, 20.7, 20.2, 34.0, 34.7, 55.1, 73.7, 73.9, 86.1, 89.4, 89.5, 113.5, 122.2, 125.6, 126.1, 126.3, 126.7, 128.2, 128.5, 131.7, 136.7, 141.8, 142.0, 159.0; IR (neat): 3555, 3438, 2226, 1606, 1508, 1460cm⁻¹. Anal.Calcd for CₚHₚO₂: C, 84.72; H, 6.26. Found: C, 84.68; H, 6.35.

Compound 1g (4:1 mixture of diastereoisomers) was prepared according to the procedure A in 94% yield as an oil: 1H NMR (300 MHz; DCl₃) (4:1 mixture of diastereoisomers): δ. [0.79-0.88 (m), 0.94-1.03 (m), 1 H], 1.30-1.39 (m, 1 H), 1.50-1.57 (m, 1 H), [1.67 (s), 1.71 (s), 3 H], [2.00-2.06 (m), 2.10-2.16 (m), 1H], [2.28 (s), 2.30 (s), 1H], 7.05-7.32 (m, 8 H), 7.41-7.45 (m, 2 H); 13C NMR (75 MHz, DCl₃) (4:1 mixture of diastereoisomers): δ 12.2, 21.0, 29.8, 30.0, 33.0, 33.2, 70.0, 84.4, 90.0,
Compound 1k (cis) was prepared according to the procedure A in 76% yield as an oil:

1H NMR (300 MHz; DCl$_3$) (cis): δ 0.88-1.01 (m, 4 H), 1.29-1.46 (m, 5 H), 1.50-1.67 (m, 3 H), 2.17-2.29 (m, 3 H), 2.45 (s, 1 H), 6.99-7.01 (d, J = 7.5 Hz, 2 H), 7.11-7.36 (m, 6 H), 7.65-7.68 (d, J = 8.4 Hz, 2 H); 13C NMR (75 MHz, DCl$_3$) (cis): δ 12.1, 14.0, 18.6, 21.4, 22.1, 28.3, 31.0, 34.1, 73.8, 80.3, 87.4, 125.3, 125.6, 126.4, 127.5, 128.1, 128.2, 141.9, 145.0. IR (neat): 3432, 2930, 2362, 1604, 1452, 752, 697 cm$^{-1}$; Anal.Calcd for C$_{23}$H$_{26}$O: C, 86.75; H, 8.23. Found: C, 86.81; H, 8.14.

Typical procedure B for the preparation of 1-cyclopropyl-2-propyn-1-ols 1h-j, 1l-m:

To a stirring solution of ethynylmagnesium bromide solution (3 equiv, 0.35 M in THF) was added ketones (20 mmol, 0.35 M in THF) at room temperature and stirred for 3 h. The reaction mixture was quenched by addition of saturated aqueous ammonium chloride (60 mL) and extracted with ethyl ether (2×80 mL). The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to obtain 1l as a mixture of diastereoisomers in 76% yield.

To a solution of compound 1l (1.2 equiv) and R$_3$I (1 equiv) in Et$_3$N was added PdCl$_2$(PPh$_3$)$_2$ (3 mol %). The mixture was stirred for 5 min and CuI (6 mol %) was added. The resulting mixture was then stirring under an argon atmosphere at room temperature for 12 h. The ammonium salt was removed by filtration. The solvent was
removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford the corresponding propargylic alcohols.

Compound 1h (1:1 mixture of diastereoisomers) was prepared according to the procedure B as solid: mp, 68-70°C, 1H NMR (300 MHz; DCl$_3$) (1:1 mixture of diastereoisomers): δ 0.94-1.03 (m, 1 H), [1.34-1.39(m), 1.40-1.48(m), 1 H], 1.62-1.68 (m, 1 H), 2.32(s, 3 H), [2.24-2.29 (m), 2.40-2.47 (m), 1 H], 2.61(s, 1 H), 6.75-7.51 (m, 12 H), 7.97-8.00(m, 2 H); 13C NMR (75 MHz, DCl$_3$) (1:1 mixture of diastereoisomers): δ 12.0, 13.5, 20.7, 21.4, 34.1, 34.8, 74.1, 74.4, 86.6, 88.5, 119.1, 125.4, 125.7, 126.5, 127.8, 128.2, 128.3, 129.1, 131.7, 138.8, 141.7, 144.6; IR (neat): 3555, 3438, 2226, 1606, 1460cm$^{-1}$. Anal.Calcd for C$_{25}$H$_{22}$O: C, 88.72; H, 6.55. Found: C, 88.78; H, 6.45.

Compound 1i (1:1 mixture of diastereoisomers) was prepared according to the procedure B as solid: mp, 80-81°C, 1H NMR (300 MHz; DCl$_3$) (1:1 mixture of diastereoisomers): δ 0.99-1.06 (m, 1 H), [1.33-1.39(m), 1.45-1.49(m), 1 H], 1.70-1.77 (m, 1 H), [2.26-2.31 (m), 2.37-2.44 (m), 1 H], [2.65(s) , 2.66(s), 1 H], 7.06-7.40 (m, 12 H), 7.70-7.73 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (1:1 mixture of diastereoisomers): δ 12.0, 13.4, 20.7, 21.3, 34.1, 34.7, 73.9, 74.3, 85.2, 90.4, 120.7, 125.3, 125.7, 126.1, 127.9, 128.3, 128.6, 133.0, 134.7, 141.7, 144.2; IR (neat): 3545, 3435, 2227, 1602, 1490, 1449cm$^{-1}$. Anal.Calcd for C$_{24}$H$_{19}$ClO: C, 80.33; H, 5.84. Found: C, 80.38; H, 5.74.
Compound **1j** (10:1 mixture of diastereoisomers) was prepared according to the procedure B as solid: mp, 70-71°C, 1H NMR (300 MHz; DCl$_3$) (10:1 mixture of diastereoisomers): δ 0.96-1.06 (m, 1 H), [1.26-1.39 (m), 1.42-1.49 (m), 1 H], 1.68-1.78 (m, 1 H), [2.26-2.29 (m), 2.37-2.42 (m), 1 H], [2.58 (s), 2.59 (s), 1 H], 6.93-7.40 (m, 3 H), 6.91-7.01 (m, 11 H), 7.60-7.72 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (10:1 mixture of diastereoisomers): δ 13.3, 14.1, 20.7, 22.7, 34.7, 74.4, 79.7, 93.0, 122.1, 125.4, 125.7, 126.2, 126.4, 127.0, 127.5, 127.9, 128.3, 132.5, 141.8, 144.1; Anal. Calcd for C$_{22}$H$_{18}$O$_{5}$: C, 79.96; H, 5.49. Found: C, 79.95; H, 5.55.

Compound **1i** (2:1 mixture of diastereoisomers) was prepared according to the first step of procedure B as solid: mp, 59-60°C, 1H NMR (300 MHz; DCl$_3$) (2:1 mixture of diastereoisomers): δ 0.96-1.02 (m, 1 H), [1.28-1.33 (m), 1.38-1.45 (m), 1 H], 1.62-1.69 (m, 1 H), [2.21-2.26 (m), 2.34-2.40 (m), 1 H], [2.54 (s, 1 H), 2.63 (s, 1 H), [2.64 (s), 2.65 (s), 1 H], 6.99-7.38 (m, 8 H), 6.91-7.01 (m, 2 H), 7.65-7.68 (m, 2 H); 13C NMR (75 MHz, DCl$_3$) (2:1 mixture of diastereoisomers): δ 11.9, 13.3, 20.5, 21.2, 33.7, 34.3, 73.3, 73.8, 74.5, 84.0, 125.3, 125.7, 126.1, 126.3, 127.9, 128.3, 141.5, 141.8, 143.8; IR (neat): 3541, 3429, 2112, 1602, 1494, 1447 cm$^{-1}$. Anal. Calcd for C$_{18}$H$_{16}$O: C, 87.06; H, 6.49. Found: C, 87.18; H, 6.43.

Compound **1m** was isolated as a byproduct in preparation of compound **1h**: mp, 48-49°C, 1H NMR (300 MHz; DCl$_3$): δ 1.00-1.02 (m, 1 H), 1.33-1.34 (m, 1 H), 1.66-1.69 (m, 1 H), 2.32-2.38 (m, 1 H), 2.66 (s, 1 H), 7.03-7.35 (m, 8 H), 7.62-7.65 (m,
2 H); 13C NMR (75 MHz, DCl$_3$): δ 13.2, 20.5, 34.4, 69.9, 74.1, 80.5, 125.3, 125.8, 126.1, 126.3, 128.1, 128.3, 128.4, 141.5, 143.2; IR (neat): 3530, 3418, 2248, 1603, 1494, 1449 cm$^{-1}$. Anal. Calcd for C$_{36}$H$_{30}$O$_2$: C, 87.42; H, 6.11. Found: C, 87.37; H, 6.22.

General experimental procedure for the preparation of (Z)-conjugated enynes 2aa-2ah, 2ba-2ma:

To a solution of a cis-trans mixture of 1-cyclopropyl-2-propyn-1-ols 1a (0.3 mmol) in alcohols (1 mL) was added 3 mol % of HAuCl$_4$$\cdot$4H$_2$O under air at room temperature. When the reaction was considered complete as determined by TLC analysis, 30 mL of ethyl ether was added and the mixture was washed with water, saturated brine, dried over Na$_2$SO$_4$ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford corresponding conjugated enynes. (petroleum ether–ethyl acetate, 40:1).

2aa: oil, IR (neat): 3028, 2930, 2821, 2204, 1951, 1598, 1490, 1447 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.96-3.06 (m, 2 H), 3.26 (s, 3 H, OCH$_3$), 4.33-4.37 (m, 1 H), 6.44-6.69 (t, $J = 7.8$ Hz 1 H), 7.26-7.37 (m, 11 H), 7.47-7.51 (m, 2 H), 7.60-7.64 (d, $J = 8.7$ Hz ,2H). 13C NMR (75 MHz, DCl$_3$): δ 39.7, 56.9, 83.3, 86.6, 95.5, 123.3, 125.0, 126.0, 126.6, 127.6, 128.2, 128.3, 128.4, 131.5, 134.0, 134.0, 138.0, 141.6. Anal. Calcd for C$_{25}$H$_{22}$O: C, 88.72; H, 6.55; Found: C, 88.65; H, 6.59.

2ab: oil, IR (neat): 3028, 2972, 2868, 2203, 1951, 1598, 1490, 1447 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 1.08-1.13 (t, $J = 6.9$ Hz, 3 H), 2.88-2.95 (m, 2 H), 3.28-3.36 (m, 2 H), 4.34-4.38 (t, $J = 7.8$ Hz,1 H), 6.37-6.42 (t, $J = 7.8$ Hz, 1 H), 7.14-7.26 (m,11 H), 7.30-7.42 (m, 2 H), 7.51-7.54 (m, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 15.3, 40.0, 64.2, 81.4, 86.7, 95.4, 123.3, 124.9, 126.0, 126.5, 127.5, 127.6, 128.2, 128.2, 128.3, 128.3, 131.4, 131.5, 131.9, 134.4, 138.0, 142.3. Anal. Calcd for C$_{26}$H$_{24}$O: C, 88.60; H, 6.86; Found: C, 88.52; H, 6.94.

2ac: oil, IR (neat): 3028, 2969, 2926, 2204, 1948, 1598, 1491, 1448, 1064 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 1.03-1.05 (d, $J = 5.7$ Hz, 3 H), 1.08-1.10 (d, $J =6.0$ Hz, 3H),
2.85-2.89 (t, $J = 6.6$ Hz, 2H), 3.44-3.48 (m, 1 H), 4.47-4.51 (t, $J = 6.6$ Hz, 1 H), 6.39-6.44 (t, $J = 7.5$ Hz, 1 H), 7.14-7.32 (m, 11 H), 7.39-7.43 (m, 2 H), 7.52-7.54 (d, $J = 7.2$ Hz, 2 H). 13C NMR (75 MHz, DCl$_3$) δ 21.3, 23.3, 40.3, 69.1, 78.7, 86.6, 95.3, 123.3, 124.7, 126.0, 126.5, 127.3, 127.5, 128.2, 128.2, 128.3, 131.4, 134.7, 138.1, 143.0. Anal. Calcd for C$_{27}$H$_{27}$O: C, 88.48; H, 7.15; Found: C, 88.44; H, 7.20.

2ad: oil. IR (neat): 3059, 3028, 2972, 2929, 2203, 1953, 1598, 1491, 1448, 1092 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 0.98 (s, 9 H), 2.77-2.82 (m, 2 H), 4.58-4.63 (t, $J = 7.2$ Hz, 1 H), 6.39-6.44 (t, $J = 7.5$ Hz, 1 H), 7.11-7.20 (m, 11 H), 7.39-7.44 (m, 2 H), 7.52-7.56 (m, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 28.7, 41.9, 74.1, 74.5, 86.9, 95.2, 123.4, 124.6, 126.0, 126.8, 127.5, 128.1, 128.2, 128.3, 131.5, 135.3, 138.1, 146.0. Anal. Calcd for C$_{28}$H$_{28}$O: C, 88.38; H, 7.42; Found: C, 88.28; H, 7.50.

2ae: oil. IR (neat): 3029, 2959, 2862, 2202, 1951, 1598, 1491, 1448, 1112 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.98-3.05 (m, 2 H), 3.55-3.77 (m, 4 H), 4.48-4.53 (m, 1 H), 6.50-6.55 (t, $J = 7.5$ Hz, 1 H), 7.21-7.39 (m, 11 H), 7.46-7.50 (m, 2 H), 7.61-7.64 (m, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 39.9, 43.1, 82.2, 86.6, 95.6, 123.3, 125.1, 126.0, 126.5, 127.6, 127.9, 128.3, 128.5, 131.5, 133.9, 138.0, 141.4. Anal. Calcd for C$_{26}$H$_{23}$ClO: C, 88.71; H, 5.99; Found: C, 88.62; H, 6.05.

2af: oil. IR (neat), 3079, 3060, 3029, 2857, 2204, 1951, 1598, 1491, 1448, 1084 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.94-3.12 (m, 2 H), 3.80-4.00 (m, 2 H), 4.51-4.54 (t, $J = 6.6$ Hz, 1 H), 5.13-5.28 (dd, $J = 17.4$ Hz, $J = 10.5$ Hz, 2 H), 5.85-5.97 (m, 1 H), 6.46-6.50 (t, $J = 7.8$ Hz), 7.19-7.39 (m, 11 H), 7.47-7.50 (m, 2 H), 7.60-7.62 (d, $J = 6.9$ Hz, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 39.9, 69.5, 80.8, 86.6, 95.5, 116.8, 123.3, 125.0, 126.0, 126.6, 127.6, 127.7, 128.8, 128.3, 131.5, 134.1, 134.8, 138.0, 141.8. Anal. Calcd for C$_{27}$H$_{24}$O: C, 88.97; H, 6.64; Found: C, 88.89; H, 6.70.

2ag: oil, IR (neat): 3294, 3059, 3030, 2899, 2856, 2204, 2118, 1491, 1447 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.35-2.38 (m, 1 H), 2.98-3.12 (m, 2 H), 3.87-3.94 (m, 1 H), 4.12-4.19 (m, 1 H), 4.71-4.75 (t, $J = 6.6$ Hz, 1 H), 6.63-6.50 (m, 1 H), 7.21-7.37 (m, 11 H), 7.47-7.49 (m, 2 H), 7.60-7.63 (d, $J = 6.9$ Hz, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 39.5, 55.7, 74.2, 79.9, 80.2, 86.6, 95.6, 123.3, 125.2, 126.1, 126.9, 127.6, 128.0,

2ah: oil. IR (neat): 3060, 3029, 2863, 2202, 1954, 1599, 1491, 1450, 1090 cm\(^{-1}\).

1H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.97-3.13 (m, 2 H), 4.30-4.34 (d, \(J = 12.3\) Hz, 2 H), 4.51-4.60 (m, 2 H), 6.45-6.47 (t, \(J = 7.8\) Hz, 1 H), 7.26-7.40 (m, 16 H), 7.43-7.49 (m, 2 H), 7.58-7.60 (m, 2 H); 13C NMR (75 MHz, DCl\(_3\)): \(\delta\) 40.0, 70.4, 86.8, 95.5, 123.3, 125.0, 126.0, 126.8, 127.5, 127.6, 127.7, 127.8, 128.0, 128.2, 128.3, 128.5, 131.5, 133.2, 138.1, 138.4, 141.8. Anal. Calcd for C31H26O: C, 89.82; H, 6.32; Found: C, 89.73; H, 6.36.

2ba: oil. IR (neat): 3058, 3031, 2931, 2207, 1956, 1511, 1491, 1445, 1096 cm\(^{-1}\). 1H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.89-3.11 (m, 2 H), 3.22 (s, 3 H), 3.76 (s, 3 H), 6.42-6.47 (m, 1 H), 6.86-6.87 (m, 2 H), 7.22-7.35 (m, 8 H), 7.46-7.50 (m, 2 H), 7.60-7.63 (m, 2 H). 13C NMR (75 MHz, DCl\(_3\)): \(\delta\) 39.7, 56.1, 56.4, 82.8, 86.6, 95.5, 113.7, 123.3, 124.9, 126.0, 127.5, 127.8, 128.2, 128.3, 131.5, 133.5, 134.2, 138.0, 159.1. Anal. Calcd for C26H24O2: C, 84.75; H, 6.57; Found: C, 84.66; H, 6.59.

2ca: oil. IR (neat): 3058, 3029, 2930, 2204, 1950, 1597, 1489, 1445, 1093 cm\(^{-1}\). 1H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.90-3.04 (m, 2 H), 3.25 (s, 3 H), 3.76 (s, 3 H), 4.30-4.34 (t, \(J = 7.2\) Hz, 1 H), 6.40-6.45 (t, \(J = 7.8\) Hz, 1 H), 7.20-7.34 (m, 11 H), 7.45-7.49 (m, 2 H), 7.59-7.62 (m, 2 H). 13C NMR (75 MHz, DCl\(_3\)): \(\delta\) 39.6, 56.8, 82.6, 86.4, 95.6, 123.2, 125.4, 126.0, 127.7, 128.0, 128.6, 131.5, 133.3, 137.8, 140.1. Anal. Calcd for C25H21ClO: C, 80.53; H, 5.68; Found: C, 88.49; H, 5.70.

2da: oil. IR (neat): 3058, 3029, 2927, 2204, 1597, 1491, 1092 cm\(^{-1}\). 1H NMR (300 MHz; DCl\(_3\)): \(\delta\) 3.12-3.18 (m, 2 H), 3.33 (s, 3 H), 4.40-4.44 (s, 3 H), 6.34-6.46 (m, 3 H), 7.23-7.41 (m, 8 H), 7.51-7.54 (m, 2 H), 7.61-7.62 (d, \(J = 7.2\) Hz, 2 H). 13C NMR (75 MHz, DCl\(_3\)): \(\delta\) 35.8, 56.5, 75.7, 86.4, 95.8, 108.2, 110.0, 123.3, 125.3, 126.0, 127.7, 128.3, 131.5, 133.1, 137.9, 142.4, 153.7. Anal. Calcd for C23H20O2: C, 84.12; H, 6.14; Found: C, 84.10; H, 6.21.

2ea: oil. IR (neat): 3059, 3029, 2927, 2205, 1951, 1599, 1487, 1448, 1099 cm\(^{-1}\). 1H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.95-3.06 (m, 2 H), 3.27 (s, 3 H), 4.33-4.37 (t, \(J = 5.7\) Hz,
1 H), 6.44-6.49 (t, J = 6.9 Hz, 1 H), 7.22-7.50 (m, 14 H). 13C NMR (75 MHz, DCl$_3$): δ 39.8, 56.7, 83.1, 86.0, 95.8, 121.5, 123.0, 124.0, 126.6, 127.6, 127.7, 128.3, 128.4, 128.5, 131.3, 131.5, 134.5, 136.9, 141.4. Anal. Calcd for C$_{25}$H$_{21}$BrO: C, 71.95; H, 5.07; Found: C, 71.84; H, 5.14.

2fa: oil. IR(neat): 3059, 3031, 2931, 2204, 1606, 1510, 1490, 1250, 1099 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.91-3.03 (m, 2 H), 3.27 (s, 3 H), 3.80 (s, 3 H), 4.31-4.36 (m, 1 H), 6.33-6.38 (t, J = 7.2 Hz, 1 H), 6.85-6.89 (d, J = 9 Hz, 2 H), 7.27-7.36 (m, 8 H), 7.47-7.50 (m, 2 H), 7.53-7.56 (d, J = 9 Hz, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 39.7, 55.2, 56.7, 83.4, 86.8, 95.3, 113.7, 123.4, 124.4, 126.6, 127.2, 127.6, 128.2, 128.3, 130.7, 131.5, 132.1, 141.7, 159.2. Anal. Calcd for C$_{26}$H$_{24}$O$_2$: C, 84.75; H, 6.57; Found: C, 84.69; H, 6.66.

2ga: oil. IR(neat): 3451, 2922, 1491, 1449, 1103, 756, 697 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 1.91 (s, 3 H), 2.72-2.82 (m, 2 H), 3.23 (m, 3 H), 4.20-4.25 (m, 1 H), 5.71-5.75 (m, 1 H), 7.27-7.42 (m, 10 H); 13C NMR (75 MHz, DCl$_3$): δ 23.1, 39.1, 56.6, 83.4, 88.6, 93.2, 119.8, 123.5, 116.6, 127.5, 127.9, 128.2, 128.3, 131.4, 133.7, 141.7. Anal. Calcd for C$_{20}$H$_{20}$O: C, 86.92; H, 7.29. Found: C, 86.97; H, 7.22.

2ha: oil. IR (neat, cm$^{-1}$): 3060, 3029, 2928, 2201, 1489, 1094 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.34 (s, 3 H), 2.94-3.03 (m, 2 H), 3.26 (s, 3 H), 4.32-4.37 (m, 1 H), 6.41-6.46 (t, J = 7.5 Hz, 1 H), 7.11-7.14 (d, J = 7.8 Hz, 2 H), 7.20-7.39 (m, 10 H), 7.60-7.63 (m, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 21.5, 39.7, 56.7, 83.4, 85.9, 95.8, 120.2, 125.2, 126.1, 126.6, 127.5, 127.7, 128.3, 128.4, 129.1, 131.4, 133.7, 138.1, 138.4, 141.7. Anal. Calcd for C$_{26}$H$_{24}$O$_2$: C, 88.60; H, 6.86; Found: C, 88.50; H, 6.90.

2ia: oil. IR (neat, cm$^{-1}$): 3060, 3029, 2932, 2281, 2204, 1489, 1094 cm$^{-1}$. 1H NMR (300 MHz; DCl$_3$): δ 2.94-3.03 (m, 2 H), 3.26 (s, 3 H), 4.31-4.46 (t, J = 6.9 Hz, 1 H), 6.45-6.50 (t, J = 7.2 Hz, 1 H), 7.26-7.40 (m, 12 H), 7.57-7.60 (t, J = 7.8 Hz, 2 H). 13C NMR (75 MHz, DCl$_3$): δ 39.8, 56.7, 83.3, 87.6, 94.3, 121.8, 124.9, 126.0, 126.6, 127.7, 128.3, 128.4, 128.6, 132.7, 134.2, 134.5, 137.8, 141.5. Anal. Calcd. for C$_{25}$H$_{21}$ClO: C, 80.53; H, 5.68; Found: C, 80.50; H, 5.75.
2ja: oil. IR (neat): 3060, 3028, 2926, 2195, 1492, 1101 cm\(^{-1}\). \(^1\)H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.84-2.95 (m, 2 H), 3.18 (s, 3 H), 4.23-4.28 (t, \(J = 6.9\) Hz, 1 H), 6.35-6.39 (t, \(J = 7.5\) Hz, 1 H), 6.88-6.91 (m, 1 H), 7.12-7.28 (m, 10 H), 7.47-7.50 (d, \(J = 7.5\) Hz, 2 H). \(^{13}\)C NMR (75 MHz, DCl\(_3\)): \(\delta\) 39.8, 56.7, 83.3, 88.5, 90.4, 123.3, 124.9, 126.0, 126.6, 127.1, 127.3, 128.3, 128.4, 131.7, 134.3, 137.7, 141.5. Anal. Calcd. for C\(_{23}\)H\(_{20}\)OS: C, 80.19; H, 5.85; Found: C, 80.13; H, 5.93.

2ka: oil. IR (neat): 3325, 3221, 1685, 1651, 1539, 1358, 1176, 668 cm\(^{-1}\). \(^1\)H NMR (300 MHz; DCl\(_3\)): \(\delta\) 0.85-0.92 (m, 3 H), 1.25-1.48 (m, 4 H), 1.55-1.64 (m, 2 H), 2.40-2.44 (t, \(J = 7.2\) Hz, 2 H), 2.85-2.98 (m, 2 H), 3.25 (s, 3 H), 4.27-4.31 (m, 1 H), 6.30-6.35 (t, \(J = 7.2\) Hz, 1 H), 7.20-7.39 (m, 8 H), 7.54-7.56 (d, \(J = 7.8\) Hz, 2 H); \(^{13}\)C NMR (75 MHz, DCI\(_3\)): \(\delta\) 14.0, 19.5, 22.2, 28.5, 31.1, 39.6, 56.7, 76.6, 83.4, 96.9, 125.3, 126.0, 126.6, 127.3, 127.6, 128.1, 128.4, 132.5, 138.6, 141.8. Anal. Calcd. for C\(_{24}\)H\(_{28}\)O: C, 86.70; H, 8.49; Found: C, 86.59; H, 8.52.

2la: oil. IR (neat): 3064, 3028, 2980, 2206, 1958, 1731, 1508, 1248 cm\(^{-1}\). \(^1\)H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.88-2.98 (m, 2 H), 3.24 (s, 3 H), 3.29 (s, 1 H), 4.27-4.31 (t, \(J = 7.5\)Hz, 1 H), 6.48-6.53 (t, \(J = 6.9\) Hz, 1 H), 7.23-7.35 (m, 8 H), 7.54-7.56 (d, \(J = 6.9\) Hz, 2 H). \(^{13}\)C NMR (75 MHz, DCl\(_3\)): \(\delta\) 39.7, 56.7, 80.7, 83.1, 83.4, 124.0, 125.9, 126.6, 127.6, 127.7, 128.3, 128.4, 128.6, 135.8, 137.5, 141.5. Anal. Calcd. for C\(_{19}\)H\(_{18}\)O: C, 86.99; H, 6.92; Found: C, 84.10; H, 7.01.

2ma: solid; mp 90–91 °C. IR (KBr): 3060, 3029, 2931, 2822, 2204, 1492, 1449, 1101 cm\(^{-1}\). \(^1\)H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.13-3.05 (m, 4 H), 3.25 (s, 6 H), 4.27-4.31 (m, 2 H), 6.55-6.60 (t, \(J = 7.5\) Hz, 2 H), 7.19-7.36 (m, 16 H), 7.52-7.61 (m, 4 H). \(^{13}\)C NMR (75 MHz, DCI\(_3\)): \(\delta\) 39.8, 56.7, 79.6, 79.9, 83.1, 124.3, 126.0, 126.6, 127.7, 127.8, 128.4, 128.5, 137.2, 137.9, 141.3. Anal. Calcd for C\(_{38}\)H\(_{34}\)O\(_2\): C, 87.32; H, 5.65; Found: C, 87.33; H, 5.71.

2lb: oil. IR(neat): 3058, 3028, 2928, 1671, 1622 cm\(^{-1}\). \(^1\)H NMR (300 MHz; DCl\(_3\)): \(\delta\) 2.25 (s, 3 H), 2.39-2.56 (m, 2 H), 3.21 (s, 3 H), 4.21-4.25 (m, 1 H), 6.91-6.96 (m, 3 H), 7.18-7.35 (m, 8 H). \(^{13}\)C NMR (75 MHz, DCI\(_3\)): \(\delta\) 27.2, 38.2, 56.7, 82.6, 126.4, 127.4,
128.1, 128.4, 129.3, 135.7, 139.8, 140.9, 144.3, 198.5. Anal. Calcd for C_{19}H_{20}O_{2}: C, 81.40; H, 7.19; Found: C, 81.30.; H, 7.22.
HO
Ph
Ph
1a(trans)

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007
Ph
\hspace{1cm} OCH₃
\hspace{1cm} Ph

2lb

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007
The NOE spectra of compound 2fa: