Anion triggered electropolymerisation in ferrocene functionalised ortho-phenylenediamine based receptors

Marta Arroyo, Peter R. Birkin, Philip A. Gale,* Sergio E. Garcia-Garrido and Mark E. Light
School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ.
Fax: +44 23 8059 6805; Tel: +44 23 8059 3332;
E-mail: Philip.gale@soton.ac.uk

Supplementary information

Figure S1 1H NMR spectrum of compound 1 in DMSO-d_6
Figure S2 13C\{^1H\} NMR spectrum of compound 1 in DMSO-d$_6$

Figure S3 1H NMR spectrum of compound 2 in DMSO-d$_6$
Figure S4 13C{1H} NMR spectrum of compound 2 in DMSO-d$_6$

Figure S5 1H NMR spectrum of compound 3 in DMSO-d$_6$
Figure S6 13C{1H} NMR spectrum of compound 3 in DMSO-d$_6$

Figure S7 1H NMR spectrum of compound 4 in DMSO-d$_6$
Figure S8 13C\text{\{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{H}}}}}}}}}}}}}}$ NMR spectrum of compound 4 in DMSO-d_6

Figure S9 1H NMR spectrum of compound 5 in DMSO-d_6
Figure S10 13C\{1H\} NMR spectrum of compound 5 in DMSO-d$_6$

Figure S11 1H NMR spectrum of compound 6 in DMSO-d$_6$
Figure S12 13C-1H NMR spectrum of compound 6 in DMSO-d_6.

Figure S13 1H NMR titration curve of 1 with tetrabutylammonium acetate.
Figure S14 1H NMR titration curve of 1 with tetrabutylammonium benzoate.

Figure S15 1H NMR titration curve of 1 with tetrabutylammonium dihydrogenphosphate.
Figure S16 1H NMR titration curve of 1 with tetrabutylammonium chloride.

Figure S17 1H NMR titration curve of 2 with tetrabutylammonium acetate.
Figure S18 1H NMR titration curve of 2 with tetrabutylammonium benzoate.

Figure S19 1H NMR titration curve of 2 with tetrabutylammonium dihydrogenphosphate.
Figure S20 1H NMR titration curve of 2 with tetrabutylammonium chloride.

Figure S21 1H NMR titration curve of 3 with tetrabutylammonium acetate.
Figure S22 1H NMR titration curve of 3 with tetrabutylammonium benzoate.

Figure S23 1H NMR titration curve of 3 with tetrabutylammonium dihydrogenphosphate.
Figure S24 1H NMR titration curve of 3 with tetrabutylammonium chloride.

Figure S25 1H NMR titration curve of 4 with tetrabutylammonium acetate.
Figure S26 1H NMR titration curve of 4 with tetrabutylammonium benzoate.

Figure S27 1H NMR titration curve of 4 with tetrabutylammonium dihydrogenphosphate.
Figure S28 1H NMR titration curve of 4 with tetrabutylammonium chloride.

Figure S29 1H NMR titration curve of 5 with tetrabutylammonium acetate in DMSO-d_6/0.5% H$_2$O.
Figure S30 1H NMR titration curve of 5 with tetrabutylammonium benzoate in DMSO-d_6/0.5% H$_2$O.

Figure S31 1H NMR titration curve of 5 with tetrabutylammonium dihydrogenphosphate in DMSO-d_6/0.5% H$_2$O.
Figure S32: 1H NMR titration curve of 5 with tetrabutylammonium chloride in DMSO-d_6/0.5% H$_2$O.

Figure S33: 1H NMR titration curve of 5 with tetrabutylammonium acetate in DMSO-d_6/5.0% H$_2$O.
Figure S34 1H NMR titration curve of 5 with tetrabutylammonium benzoate in DMSO-d_6/5.0% H$_2$O.

Figure S35 1H NMR titration curve of 5 with tetrabutylammonium dihydrogenphosphate in DMSO-d_6/5.0% H$_2$O.
Figure S36 1H NMR titration curve of 6 with tetrabutylammonium acetate.

Figure S37 1H NMR titration curve of 6 with tetrabutylammonium benzoate.
Figure S38 1H NMR titration curve of 6 with tetrabutylammonium dihydrogenphosphate.

Figure S39 1H NMR titration curve of 6 with tetrabutylammonium chloride.
Figure S40 Cyclic voltammetric data gathered for compound (3) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0: ▬, 2:1 ▬ and 5:1 ▬ respectively). The electrolyte consisted of 0.1 mol dm$^{-3}$ TBATFP in (95% CH$_3$CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s$^{-1}$ under anaerobic conditions at 20-23°C.

Figure S41 Cyclic voltammetric data gathered for compound (4) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0: ▬, 2:1 ▬ and 5:1 ▬ respectively). The electrolyte consisted of 0.1 mol dm$^{-3}$ TBATFP in (95% CH$_3$CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s$^{-1}$ under anaerobic conditions at 20-23°C.
Figure S42 Cyclic voltammetric data gathered for compound (5) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1, 2:1 and 5:1 respectively). The electrolyte consisted of 0.1 mol dm$^{-3}$ TBATFP in (95% CH$_3$CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s$^{-1}$ under anaerobic conditions at 20-23°C.

Figure S43 Cyclic voltammetric data gathered for compound (6) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1, 2:1 and 5:1 respectively). The electrolyte consisted of 0.1 mol dm$^{-3}$ TBATFP in (95% CH$_3$CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s$^{-1}$ under anaerobic conditions at 20-23°C.