Supporting information:

Bimetallic Cyanido-Bridged Magnetic Materials Derived from Manganese(III) Schiff-Base Complexes and Pentacyanidonitrosylferrate(II) precursor

Rodica Ababei, a,b,c,d Yang-Guang Li, a,b Olivier Roubeau, a,b Marguerite Kalisz, a,b Nicolas Bréfuel, a,b Claude Coulon, a,b Etienne Harté, a,b Xueling Liu, a,b Corine Mathonière*, c,d and Rodolphe Clérac*, a,b

a CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe "Matériaux Moléculaires Magnétiques", 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France; Fax: (+33) 5 56 84 56 50; Tel: (+33) 5 56 84 56 50; E-mail: clerac@crep-bordeaux.cnrs.fr

b Université de Bordeaux, UPR 8641, Pessac, F-33600, France

c CNRS, UPR 9048, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, Pessac, F-33608, France; Fax: (+33) 5 40 00 27 61; Tel: (+33) 5 40 00 26 82; E-mail: mathon@icmb-bordeaux.cnrs.fr

d Université de Bordeaux, UPR 9048, Pessac, F-33608, France
Figure S1: Ball-and-stick view of the environment of NO ligand in the trinuclear unit of complex 1. The broken line suggests the possible intramolecular interactions between O\textsubscript{nitro} and the aromatic ring of the Schiff base ligands.

Figure S2: Packing arrangement of the 3-D supramolecular assembly of complex 1. There is no obvious H-bonding interaction between two adjacent supramolecular layers.

Figure S3: Ball-and-stick view of the environment of NO ligand in complex 2. The broken lines suggest the possible intramolecular interactions between O\textsubscript{nitro} and the aromatic ring of the Schiff base ligands, as well as the intermolecular interactions between O atom of the nitro ligand and adjacent N atom of the cyanido ligand.
Figure S4: a) Packing arrangement of complex 2 viewed along b axis. (b) View of the π-π interaction between two aromatic planes derived from adjacent layers with the distance of ca. 3.75 Å. (c) Packing arrangement of complex 2 viewed along c axis. (d) View of the single 2-D layer in complex 2.

Figure S5: Ball-and-stick view of the environment of NO ligand in complex 3. The broken lines suggest the possible intramolecular interactions between O₅ nitro and the aromatic ring of the Schiff base ligands.

Figure S6: Packing arrangement of complex 3 viewed along b axis. H atoms and solvent water molecules are omitted for clarity. There are no direct H-bonding interactions between two adjacent layers.
Figure S7: Temperature dependence at 100 and 1000 Hz of the in-phase (χ') and out-of-phase (χ'') component of the ac susceptibility for 3 below 7 K under zero dc-field.

Figure S8: Frequency dependence of the in-phase component of the ac susceptibility for 3 as a function of the ac frequency between 1 and 1500 Hz at 1.8 K under dc-fields.

Figure S9: Temperature dependence at different ac frequencies (a) and frequency dependence at different temperatures (b) of the in-phase component of the ac susceptibility for 3 below 7 K under 1800 Oe.
Figure S10: Absolute surface reflectivity vs wavelength for 1 at 290 (red), 150 (blue) and 5 K (black) using a white light of 0.5 mW/cm².

Figure S11: Absolute surface reflectivity vs wavelength for 2 at 290 (red), 150 (blue) and 5 K (black) using a white light of 0.5 mW/cm².

Figure S12: Absolute surface reflectivity vs wavelength for 3 at 290 (red), 150 (blue) and 5 K (black) using a white light of 0.5 mW/cm².

Figure S13: Absolute surface reflectivity vs wavelength for 1 at 5 K under a white light of 0.5 mW/cm²; the red and blue dots are respectively before and after irradiation at 470 nm (60 mW/cm²).

Figure S14: Absolute surface reflectivity vs wavelength for 2 at 5 K under a white light of 0.5 mW/cm²; the red and blue dots are respectively before and after irradiation at 470 nm (60 mW/cm²).

Figure S15: Absolute surface reflectivity vs wavelength for 3 at 5 K under a white light of 0.5 mW/cm²; the red and blue dots are respectively before and after irradiation at 470 nm (60 mW/cm²).