Supporting Information Document to Accompany:

Radical Synthesis of Trialkyl, Triaryl, Trisilyl, and Tristannyl Phosphines from P₄

Brandi M. Cossairt and Christopher C. Cummins

General Experimental Considerations:

All manipulations were performed in a Vacuum Atmospheres model MO-40M glovebox under an inert atmosphere of purified N₂. All solvents were obtained anhydrous and oxygen-free by bubble degassing (N₂) and purification using a Glass Contours Solvent Purification System built by SG Water. Deuterated solvents were purchased from Cambridge Isotope Labs. Benzene- d_6 was degassed and stored over molecular sieves for at least 2 d prior to use. Celite 435 (EM Science) were dried by heating above 200 °C under a dynamic vacuum for at least 24 h prior to use. Ti(N['Bu]Ar)₃ (Ar = 3,5-Me₂C₆H₃),¹ V(N[Np]Ar)₃ (Np = CH₂'Bu),² Cp*₂Sm,³ and Cp₂TiCl⁴ were prepared by literature methods. All other reagents were purchased from Aldrich chemical company and were used without further purification. All glassware was oven-dried at temperatures greater than 170 °C prior to use. NMR spectra were obtained on Varian Inova 500 instruments equipped with Oxford Instruments superconducting magnets and referenced to residual C₆H₅D (¹H = 7.16 ppm, ¹³C = 128.06 ppm). ³¹P NMR spectra were referenced externally to 85% H₃PO₄ (0 ppm). GC-MS data were collected using an Agilent 6890N network GC system with an Agilent 5973 Network mass selective detector and an RTX-1 column from Restek.

Abbreviations:

$$\begin{split} Ph &= C_6 H_5 \\ Mes &= 2,4,6\text{-}Me_3 C_6 H_2 \\ Cy &= C_6 H_{11} \\ Dmp &= 2,6\text{-}Me_2 C_6 H_3 \\ Ar &= 3,5\text{-}Me_2 C_6 H_3 \\ Np &= C H_2{}^t Bu \end{split}$$

Representative protocol for reaction between $Ti(N[^tBu]Ar)_3$, RX (RX = PhBr, MesBr, DmpI, CyBr, Me₃SiI, and Ph₃SnCl), and P₄: Synthesis of PPh₃

Ti(N[^{*t*}Bu]Ar)₃ (279 mg, 0.484 mmol) was added to a 0.04 M solution of P₄ in benzene (5 mg total P₄, 0.040 mmol). BrC₆H₅ (76 mg, 0.484 mmol) was then added to the reaction mixture at room temperature by microliter syringe. Over the course of a minute, the originally green reaction mixture took on a bright orange color. The reaction mixture was analyzed by ¹H, ¹³C, and ³¹P NMR spectroscopies. Using OPPh₃ (26 ppm) as an internal standard, a single pulse ³¹P NMR experiment showed 71% conversion to PPh₃ (s, -4.9 ppm) with the balance made up by P₂Ph₄ (-14 ppm). GC-MS analysis confirmed that assignment. A solvent screening (benzene, toluene, THF, Et₂O, n-hexane) and concentration screening (0.01 M P₄, 0.02 M P₄, 0.03 M P₄,

0.04 M P₄, and 0.05 M P₄) indicated these conditions as optimal for conversion of 0.25 equiv P₄ to 1 equiv PPh₃ using 3 equiv Ti(N['Bu]Ar)₃ and 3 equiv PhBr.

In order to convert all of the P₄ to PPh₃, the reaction was repeated using a 0.04 M solution of P₄ (5 mg total P₄, 0.040 mmol, 0.25 equiv), 5 equiv (465 mg, 0.807 mmol) of Ti(N[^{*t*}Bu]Ar)₃, and 5 equiv (126 mg, 0.807 mmol) of BrC₆H₅. Again, over the course of a minute, the originally green reaction mixture took on a bright orange color. The reaction mixture was analyzed by ¹H, ¹³C, and ³¹P NMR spectroscopies. Using OPPh₃ (26 ppm) as an internal standard, a single pulse ³¹P NMR experiment showed 98% conversion to PPh₃ (s, -4.9 ppm). GC-MS analysis confirmed that assignment. A screening of reaction stoichiometry showed 5 equiv of Ti(N[^{*t*}Bu]Ar)₃ and 5 equiv BrC₆H₅ was necessary for the complete conversion of P₄ to PPh₃; when fewer equivalents were used, small amounts of P₂Ph₄ were still observed. When the optimized conditions are scaled up 10-fold, PPh₃ was isolated by repeated crystallizations at -35 °C in Et₂O in 72% yield (304 mg).

These optimized conditions of 0.04 M P₄ (0.25 equiv), benzene, and 5 equiv of RX/Ti(N[^{*t*}Bu]Ar)₃ are effective for both PPh₃ and PCy₃ syntheses. For P(SiMe₃)₃ and P(SnPh₃)₃ the same conditions are used but with only 3 equiv (stoichiometric) RX/Ti(N[^{*t*}Bu]Ar)₃. Starting with 50 mg of P₄, P(SiMe₃)₃ was isolated by vacuum transfer in 86% yield (348 mg) and P(SnPh₃)₃ was isolated in 75% yield (1.30 g) by repeated recrystallization from Et₂O. For the synthesis of P₃Mes₃ and *cis,trans*-DmpP₄Dmp, the same conditions are used but with only 1.5 equiv of RX/Ti(N[^{*t*}Bu]Ar)₃. P₃Mes₃ was isolated by repeated crystallization from Et₂O in 61% yield starting with 50 mg of P₄. *cis,trans*-DmpP₄Dmp was isolated by repeated crystallization from Et₂O in 61% yield starting with 50 mg of P₄.

In order to use P₂Ph₄ as the starting material for PPh₃ synthesis, the same reaction protocol and conditions can be used. Treatment of a 0.04 M solution of P₂Ph₄ (5 mg, 0.014 mmol, 0.5 equiv) with Ti(N[^tBu]Ar)₃ (93 mg, 0.16 mmol, 1 equiv) followed by BrPh (60 mg, 0.16 mmol, 1 equiv) resulted in a rapid color change from green to orange upon stirring. The reaction mixture was analyzed by ¹H, ¹³C, and ³¹P NMR spectroscopies. Using OPPh₃ (26 ppm) as an internal standard, a single pulse ³¹P NMR experiment showed 97% conversion to PPh₃ (s, -4.9 ppm). Similar results were found when 0.5 equiv P₂Ph₄ was treated with 1 equiv of MesBr, CyBr, or Ph₃SnCl, which produced 1 equiv of P(Ph₂)Mes (-16.0 ppm), P(Ph₂)Cy (-3.4 ppm), or P(Ph₂)SnPh₃ (-56.2 ppm, ¹J_{119Sn/P} = 715 Hz, ¹J_{117Sn/P} = 682 Hz), respectively, each in greater than 95% yield.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Characterization Data:

PPh₃:

³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -4.9$ ppm (s, 1P). GC-MS = 262 m/z.

P₂Ph₄:

³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -14.4$ ppm (s, 1P). GC-MS = 370 m/z.

PCy₃:

³¹ $P{{}^{1}H}$ NMR (202 MHz, C₆D₆, 20 °C): $\delta = 10.5$ ppm (s, 1P). GC-MS = 280 m/z.

P(Ph₂)Mes:

³¹ $P{^{1}H}$ NMR (202 MHz, C₆D₆, 20 °C): $\delta = -16.0$ ppm (s, 1P). GC-MS = 304 m/z.

P(Ph₂)Cy:

³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -3.4$ ppm (s, 1P). GC-MS = 268 m/z.

P(Ph₂)SnPh₃:

³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -56.2$ ppm (s, 1P, ¹J₁₁₉_{Sn/P} = 715 Hz, ¹J₁₁₇_{Sn/P} = 682 Hz).

P(**SnPh**₃)₃: ³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -324.7$ ppm (¹J₁₁₉_{Sn,P} = 442 Hz, ¹J₁₁₇_{Sn,P} = 425 Hz)

P₃Mes₃:

¹H NMR (500 MHz, C₆D₆, 20 °C): $\delta = 1.92$ (s, 6 H, *p*-CH₃ of *cis*-oriented 2,4,6-Me₃C₆H₂), 2.07 (s, 3 H, *p*-CH₃, of *trans*-oriented 2,4,6-Me₃C₆H₂), 2.49 (s, 12 H, *o*-CH₃ of *cis*-oriented 2,4,6-Me₃C₆H₂), 2.79 (s, 6 H, *o*-CH₃ of *trans*-oriented 2,4,6-Me₃C6H2 group), 6.5 (s, 4 H, *m*-H of *cis*-oriented 2,4,6-Me₃C₆H₂ groups), 6.69 (s, 2 H, *m*-H of trans-oriented 2,4,6-Me₃C₆H₂ group). ³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): -109.3 (d,2P, ¹J_{P,P} = 185 Hz), -143.8 (t, 1P, ¹J_{P,P} = 185 Hz).

cis,trans-DmpP₄Dmp:

¹H NMR (500 MHz, C₆D₆, 20 °C): $\delta = 2.216$ (s, 12H, *o*-CH₃), 2.222 (s, 12H, *o*-CH₃), 2.303 (s, 6H, *p*-CH₃), 2.335 (s, 6H, *p*-CH₃), 6.8 – 7.2 (multiple overlapping signals, 14H); ³¹P{¹H} NMR (202 MHz, C₆D₆, 20 °C): $\delta = -104$ ppm (apparent q, 1P, ¹*J*_{P,P} = 193 Hz), -123 ppm (apparent q, 1P, ¹*J*_{P,P} = 191 Hz), -318 ppm (t, 2P, ¹*J*_{P,P} = 190 Hz).

CITi(**N**[^{*t*}**Bu**]**Ar**)₃: ¹H NMR (500 MHz, C₆D₆, 20 °C): δ = 1.3973 (s, 27H, ^{*t*}Bu), 2.2103 (s, 18H, Ar-Me), 6.3219 (br s, 6H, *m*-Ar), 6.7259 (s, 3H, *p*-Ar) ppm.

BrTi(N[^tBu]Ar)₃:

¹H NMR (500 MHz, C₆D₆, 20 °C): δ = 1.3772 (s, 27H, ^{*t*}Bu), 2.2285 (s, 18H, Ar-Me), 6.6045 (br s, 6H, *m*-Ar), 6.7379 (s, 3H, *p*-Ar) ppm.

ITi(**N**[^{*t*}**Bu**]**Ar**)₃: ¹H NMR (500 MHz, C₆D₆, 20 °C): δ = 1.3789 (s, 27H, ^{*t*}Bu), 2.2530 (s, 18H, Ar-Me), 6.8146 (s, 6H, *m*-Ar), 6.9121 (s, 3H, *p*-Ar) ppm.

Screening other Potential Halogen Atom Abstractors for PR₃ Synthesis:

Using the same protocol as outlined above for the generation of PPh₃ and PCy₃, other halogen atom abstractors were tested for competency. The first experiments performed here were with 12 equiv of reagent (halogen atom abstractors include: SmI₂, Fe⁰ at 100 °C, Zn⁰ at 100 °C, Cp₂TiCl, ClCo(PPh₃)₃, Cp*₂Sm, CrCl₂, and V(N[Np]Ar)₃) with 1 equiv of P₄ to ensure that no reaction takes place. All reactions were carried out at 20 °C except for the reactions with Fe and Zn, which were carried out at 100 °C. All experiments were analyzed by ³¹P NMR spectroscopy.

Following the control runs with P_4 only, the reactions with the two different RBr sources (PhBr, CyBr) were carried out as follows:

For SmI₂, ClCo(PPh₃)₃, and Cp*₂Sm, 12 equiv of reagent were combined with 3.7 mg of P₄ as a stock solution in benzene. For ClCo(PPh₃)₃, 1 additional mL of benzene was added and for the Cp*₂Sm and SmI₂ reactions, THF was used as the solvent. Upon mixing, 12 equiv of the RBr source was added. The reaction mixtures were allowed to stir for 5 h during which time no observable change took place for the SmX₂ reactions, however the ClCo(PPh₃)₃ reaction darkened from light green to a dark green-brown. Following the reaction time the ³¹P NMR spectra of all samples were obtained. It is of note that SmI₂ is known to be competent for abstracting halogen atoms from aryl iodides and aryl bromides, however in these cases HMPA is necessary as an additive to produce SmI₂ with maximum reducing power.⁵⁻⁸ It is therefore quite conceivable that using SmI₂ in a mixture of HMPA/THF would allow for a synthesis of

trisubstituted phosphines from P_4 . As a first test of this possibility, 5 mg of P_4 (0.04 mmol) were combined with SmI₂ (4.46 g of 0.1 M solution in THF, 0.484 mmol, 12 equiv) and HMPA (867 mg, 4.84 mmol, 120 equiv). When the P_4 had fully dissolved, PhI (54 µL, 0.484 mmol, 12 equiv) was added to the reaction mixture. No immediate color change was observed. Over the next 17 h the PhI was consumed and SmI₃ was formed, but no PPh₃ was generated during the process. It is possible that other RX substrates might be more amenable here.

For Fe powder, Zn dust, and $CrCl_2$, 12 equiv of reagent were placed in thick walled tubes along with 3.7 mg of P₄ and 12 equiv of RBr in THF. The reaction mixtures were refluxed for 5 h with stirring during which time no consumption of the respective metals was observed. After the reaction time had elapsed, the solutions were taken for ³¹P NMR analysis.

Cp₂TiCl was first prepared by treatment of 89 mg of Cp₂TiCl₂ with 30 mg of Zn (1.2 equiv) in benzene. The bright red reaction mixtures were allowed to stir for 1.5 h during which time the color slowly progressed to bright emerald-turquoise green. Following the reaction time, 3.7 mg of P₄ was added followed by 12 equiv of RBr. The reaction mixtures were allowed to stir 4 h during which time there was no observable color change. Following the reaction time the reaction mixtures were assessed by ³¹P NMR spectroscopy.

Reagent	12 equiv Reacts	Formation of	12 equiv	Formation of	12 equiv
	with P ₄ ?	PPh ₃ ?	Reacts with	PCy ₃ ?	Reacts with
			BrPh at all?		PCy ₃ at all?
$Ti(N[tBu]Ar)_3$	Weak	Yes	Yes	Yes	Yes
	equilibrium				
SmI_2	No	No	No	No	No
Fe ⁰ , 100 °C	No	No	No	No	No
Zn ⁰ , 100 °C	No	No	No	No	No
Cp ₂ TiCl	No	No	No	No	No
ClCo(PPh ₃) ₃	Yes, no soluble	No		No	
	products				
Cp* ₂ Sm	Yes, as reported ⁹	No		No	
CrCl ₂ , 70 °C	No	No	No	No	No
V(N[Np]Ar) ₃	No	No	No	Yes	Yes

The results of all experiments are summarized in the table below (along with the $Ti(N[tBu]Ar)_3$ results):

Effect of stoichiometry on reaction of V(N[Np]Ar)₃ with P₄ and CyBr:

Equiv CyBr and V(N[Np]Ar) ₃	[P ₄]	Yield PCy ₃	$PCy_3: P_2Cy_4$
12	0.02 M	40%	2.5:1
15	0.02 M	61%	3.2:1
15	0.04 M	75%	5:1
20	0.04 M	90%	10.2:1

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

References

- 1. J. C. Peters, A. R. Johnson, A. L. Odom, P. W. Wanandi, W. M. Davis and C. C. Cummins, *J. Am. Chem. Soc.*, 1996, **118**, 10175-10188.
- 2. P. Agarwal, N. A. Piro, K. Meyer, P. Muller and C. C. Cummins, *Angew. Chem. Int. Ed.*, 2007, **46**, 3111-3114.
- 3. D. J. Berg, C. J. Burns, R. A. Andersen and A. Zalkin, *Organometallics*, 1989, **8**, 1865-1870.
- 4. R. P. Spencer and J. Schwartz, J. Org. Chem., 1997, 62, 4204-4205.
- 5. T. Nagashima, A. Rivkin and D. P. Curran, *Can. J. Chem.*, 2000, **78**, 791-799.
- 6. U. K. Wefelscheid, M. Berndt and H. U. Reibig, Eur. J. Inorg. Chem., 2008, 3635-3646.
- 7. E. Hasegawa and D. P. Curran, *Tetrahedron Lett.*, 1993, **34**, 1717-1720.
- 8. M. Shabangi and R. A. Flowers, *Tetrahedron Lett.*, 1997, **38**, 1137-1140.
- 9. S. N. Konchenko, N. A. Pushkarevsky, M. T. Gamer, R. Koppe, H. Schnockel and H. W. Roesky, *J. Am. Chem. Soc.*, 2009, **131**, 5740-5741.