An alternative synthetic path to 1-substituted 2-naphthol

Guillermo A. Blanco and Maria Teresa Baumgartner

INFIQC - Dpto. Química Orgánica, Facultad de Ciencia Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Córdoba (5000), Argentina.
tere@mail.fcq.unc.edu.ar

Electronic Supplementary Information

Table of contents

General Methods S2
Materials S2
Experimental Procedures S2
Copies of 1H and 13C NMR spectra of product 5 S3
MS of product 5 S4
Copie of 1HNMR spectra of product 7 S4
Copie of 13CNMR spectra and MS of product 7 S5
Copies of 1H and 13C NMR spectra of product 9 S6
MS of product 9 S7
Table of energy differences (kcal/mol) between relevant points of the PES for the coupling of radical 3 with anion 4. S8
General Methods

1HNMR and 13CNMR spectra were recorded on a 200 MHz (products 5 and 7) and 400 MHz (product 9) nuclear magnetic resonance spectrometers. In the first case the solvent used was carbon tetrachloride with a capillary tube with deuterated acetone inside, and in the second one the solvent was deuterated acetone. Gas chromatographic analyses were performed on a GC with a flame-ionization detector, using a capillary column (methyl silicone, 30 m length x 0.25 mm internal diameter x 0.25μm film thickness). The GS/MS analyses were carried out employing a 30 m x 0.12 mm DB-5 MS column. Irradiation was conducted in a reactor equipped with two 400-W lamps emitting maximally at 350 nm (air and water refrigerated). Column chromatography was performed on silica gel (70-270 mesh ASTM).

Materials

Potassium tert-butoxide, benzenethiol, 2-naphthalenethiol, benzophenone, naphthalene, chlorobenzene and 1-bromo-2-naphthol were commercially available and used as received.

Dimethylsulfoxide dried with molecular sieves 4A.

Nitromethane distilled at reduced pressure and keep dried with molecular sieves 4A.

2-naphthol distilled at reduced pressure in a Kugelroh equipment.

Diethylphosphite synthesized from PCl$_3$ and ethanol and distilled at reduced pressure.1

N,N-di-(n-butyl)-p-toluenesulfonamide synthesized from n-dibutylamine and p-toluenesulfonide chloride.2

Experimental Procedures

Photoinduced reactions of anions 1 and 4 in the presence of 2: The following procedure is representative of all the reactions of 1 with 4, 6 or sulfur anions in the presence of an electron acceptor. The reactions were carried out in a 50 mL three-neck round-bottomed flask equipped with nitrogen inlet and magnetic stirrer. To 5 mL of dry and degassed dimethylsulfoxide, potassium tert-butoxide (1.93 mmol) was added. After total dissolution of the base, 2-naphthol (0.60 mmol), diethylphosphite (1.02 mmol) and N,N-di-(n-butyl)-p-toluenesulfonamide (0.11 mmol) were added. The reaction mixture was irradiated with two 400-W lamps emitting maximally at 350 nm (air and water refrigerated) for 3h. The reaction was quenched with an excess of ammonium nitrate and 30 ml of water were added. After that, it was extracted three times with dichloromethane (portions of 10 mL), and the organic layer obtained was washed twice with water (portions of 15 mL) to eliminate traces of dimethylsulfoxide. The yield of product 5 was quantified by gas chromatography with the internal standard method.

2-Naphthoxide3 and benzenethiolate4 anions have very similar oxidation potentials, however, the photoexcitation of the anions (compare entries 1 and 3, Table 2) is required to facilitate the electron transfer. 2-Naphthoxide anion has an absorption maximum at 396 nm in DMSO5 and is efficiently excited with the lamps used in this work. On the other hand, benzenethiolate anion has an absorption maximum at 306 nm in DMSO and is not efficiently excited in our system. We also explored the possibility of forming the phenylthiyl radical, using this method; however, we obtained very low performances. In the case of nitromethane anion, it is not excited in our system and is known that it is not a good electron donor with different aromatic and aliphatic halides.6

Diethyl(2-hydroxy-1-naphthyl)phosphonate 5

HRMS calculated for C_{14}H_{17}O_{4}P 280.08645, found 280.08633.

Copies of 1HNMR and 13C spectra

δ^H 1.26-1.33 (6H, t), 3.85-4.25 (4H, m), 7.01-7.08 (1H, dd, $J_1 = 5.84$ Hz $J_2 = 9.12$ Hz), 7.21-7.29 (1H, m), 7.37-7.45 (1H, m), 7.65 (1H, d, $J = 8.04$ Hz), 7.80 (1H, d, $J = 9.12$ Hz), 7.98 (1H, d, $J = 8.76$ Hz), 11.68 (1H, s, OH)

Supplementary Material (ESI) for New Journal of Chemistry

This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010
1-(phenylthio)-2-naphthol 7

Copies of 1HNMR and 13C spectra

δ^H 6.93-7.17 (6H, m), 7.25-7.33 (2H, m), 7.38-7.47 (1H, m), 7.73 (1H, d, $J = 7.68$ Hz), 7.83 (1H, d, $J = 9.12$ Hz), 8.14 (1H, d, $J = 8.40$ Hz)
MS (EI = 70eV)
1-(2-naphthylthio)-2-naphthol 9

1-(2-naphthylthio)-2-naphthol was synthesized by other route from di-(2-naphthyl)-disulfide and 2-naphthol, and isolated from this reaction to verify the proposed structure for 9. Copies of 1HNMR and 13C spectra

$^\delta$H 7.20-7.23 (1H, dd, J_1 = 8.64 Hz J_2 = 1.88 Hz), 7.38-7.45 (4H, m), 7.49-7.52 (2H, m), 7.63 (1H, d, J = 7.76 Hz), 7.76 (1H, d, J = 8.68 Hz), 7.81 (1H, d, J = 7.20 Hz), 7.93 (1H, d, J = 8.08 Hz), 8.06 (1H, d, J = 8.96 Hz), 8.33 (1H, d, J = 8.52 Hz), 8.66 (1H, s, OH)
MS (EI = 70eV)
Table of energy differences (kcal/mol) between relevant points of the PES for the coupling of radical 3 with anion 4.

<table>
<thead>
<tr>
<th>DFT B3LYP 6-31+G*</th>
<th>Reaction parameters</th>
<th>Reaction site of radical 3</th>
<th>C1</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas fase</td>
<td>ΔE_a<sup>a</sup></td>
<td>-13,51</td>
<td>-13,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔE_b<sup>b</sup></td>
<td>-23,30</td>
<td>-21,01</td>
</tr>
<tr>
<td></td>
<td>Solvent<sup>c</sup></td>
<td>ΔE_a<sup>a</sup></td>
<td>0,72</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔE_b<sup>b</sup></td>
<td>-10,23</td>
<td>-4,12</td>
</tr>
<tr>
<td></td>
<td>Free energy</td>
<td>ΔG_a<sup>d</sup></td>
<td>-1,05</td>
<td>-1,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔG_r<sup>e</sup></td>
<td>-10,05</td>
<td>-7,90</td>
</tr>
<tr>
<td></td>
<td>Solvent<sup>c</sup></td>
<td>ΔG_a<sup>d</sup></td>
<td>13,18</td>
<td>13,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔG_r<sup>e</sup></td>
<td>3,02</td>
<td>8,99</td>
</tr>
</tbody>
</table>

^a ΔE_a (kcal/mol) = Energy difference between transition states and reactants (radical 3 + anion 4).

^b ΔE_b (kcal/mol) = Energy difference between radical anions and reactants.

^c Tomasi's polarised continuum model (PCM) for DMSO without geometry optimization.

^d ΔG_a (kcal/mol) = Free energy difference between transition states and reactants. In solvent calculations the energy correction is taken as the same as in gas fase.

^e ΔG_r (kcal/mol) = Free energy difference between radical anions and reactants. In solvent calculations the energy correction is taken as the same as in gas fase.