Supporting Information

Synthesis and characterization of multifunctional CdTe/Fe$_2$O$_3$@SiO$_2$ core/shell nanosensors for Hg$^{2+}$ ions detection

Hengguo Wang1, Yapeng Li1, Xiaoliang Fei1, Lei Sun1, Ligong Zhang2, Zhenzhong Zhang2, Yue Zhang1, Yaoxian Li1, Qingbiao Yang1*

1 Department of Chemistry, Jilin University, Changchun, 130021, People’s Republic of China

2 Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
Figure. S1 PL spectra of CdTe QDs (606 nm) and CdTe/Fe$_2$O$_3$@SiO$_2$ core/shell nanostructures (612 nm) under excitation of 370 nm.
Figure. S2 XPS fully scanned spectra (a), XPS spectra of Hg4d (b) and Hg 4f (c) from CdTe/Fe₂O₃@SiO₂ nanocomposites exposed to Hg²⁺ ions.
Figure. S3 Fluorescence response of CdTe/Fe$_2$O$_3$@SiO$_2$ core/shell nanosensor in buffered (NaAc-HAc, pH = 7) solution upon different concentrations of metal cations (a 1 mM, b 0.1 mM, c 0.01 mM) with an excitation at 370 nm.